Song Peiran, Zhou Dongyang, Wang Fuxiao, Li Guangfeng, Bai Long, Su Jiacan
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
Mater Today Bio. 2024 Oct 9;29:101296. doi: 10.1016/j.mtbio.2024.101296. eCollection 2024 Dec.
Programmable biomaterials are distinguished by their ability to adjust properties and functions on demand, in a periodic, reversible, or sequential manner. This contrasts with traditional biomaterials, which undergo irreversible, uncontrolled changes. This review synthesizes key advances in programmable biomaterials, examining their design principles, functionalities and applications in bone regeneration. It charts the transition from traditional to programmable biomaterials, emphasizing their enhanced precision, safety and control, which are critical from clinical and biosafety standpoints. We then classify programmable biomaterials into six types: dynamic nucleic acid-based biomaterials, electrically responsive biomaterials, bioactive scaffolds with programmable properties, nanomaterials for targeted bone regeneration, surface-engineered implants for sequential regeneration and stimuli-responsive release materials. Each category is analyzed for its structural properties and its impact on bone tissue engineering. Finally, the review further concludes by highlighting the challenges faced by programmable biomaterials and suggests integrating artificial intelligence and precision medicine to enhance their application in bone regeneration and other biomedical fields.
可编程生物材料的特点是能够根据需要,以周期性、可逆或顺序的方式调整其性质和功能。这与传统生物材料形成对比,传统生物材料会发生不可逆、不受控制的变化。本综述总结了可编程生物材料的关键进展,研究了它们的设计原则、功能及其在骨再生中的应用。它描绘了从传统生物材料到可编程生物材料的转变,强调了它们更高的精度、安全性和可控性,从临床和生物安全角度来看,这些都是至关重要的。然后,我们将可编程生物材料分为六种类型:基于动态核酸的生物材料、电响应生物材料、具有可编程性质的生物活性支架、用于靶向骨再生的纳米材料、用于顺序再生的表面工程植入物以及刺激响应释放材料。分析了每一类材料的结构特性及其对骨组织工程的影响。最后,本综述通过强调可编程生物材料面临的挑战进一步得出结论,并建议整合人工智能和精准医学,以增强其在骨再生和其他生物医学领域的应用。