Green Jonathan, Adachi Atsuko, Shah Kunal K, Hirokawa Jonathan D, Magani Pablo S, Maimon Gaby
Laboratory of Integrative Brain Function, The Rockefeller University, New York, New York 10065, USA.
Nature. 2017 Jun 1;546(7656):101-106. doi: 10.1038/nature22343. Epub 2017 May 22.
Many animals keep track of their angular heading over time while navigating through their environment. However, a neural-circuit architecture for computing heading has not been experimentally defined in any species. Here we describe a set of clockwise- and anticlockwise-shifting neurons in the Drosophila central complex whose wiring and physiology provide a means to rotate an angular heading estimate based on the fly's angular velocity. We show that each class of shifting neurons exists in two subtypes, with spatiotemporal activity profiles that suggest different roles for each subtype at the start and end of tethered-walking turns. Shifting neurons are required for the heading system to properly track the fly's heading in the dark, and stimulation of these neurons induces predictable shifts in the heading signal. The central features of this biological circuit are analogous to those of computational models proposed for head-direction cells in rodents and may shed light on how neural systems, in general, perform integration.
许多动物在其环境中导航时会随时间追踪自身的角向。然而,尚未在任何物种中通过实验确定用于计算方向的神经回路结构。在此,我们描述了果蝇中央复合体中一组顺时针和逆时针移位神经元,其连接方式和生理学特性提供了一种基于果蝇角速度旋转角向估计值的方法。我们表明,每一类移位神经元都存在两种亚型,其时空活动模式表明每种亚型在系留行走转弯的开始和结束阶段具有不同作用。在黑暗中,方向系统需要移位神经元来正确追踪果蝇的方向,并且刺激这些神经元会在方向信号中诱导出可预测的偏移。这种生物回路的核心特征类似于为啮齿动物的头方向细胞所提出的计算模型,可能会为神经系统一般如何进行整合提供启示。