Loveland Anna B, Demo Gabriel, Grigorieff Nikolaus, Korostelev Andrei A
RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA.
Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA.
Nature. 2017 Jun 1;546(7656):113-117. doi: 10.1038/nature22397. Epub 2017 May 24.
Gene translation depends on accurate decoding of mRNA, the structural mechanism of which remains poorly understood. Ribosomes decode mRNA codons by selecting cognate aminoacyl-tRNAs delivered by elongation factor Tu (EF-Tu). Here we present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Both cognate and near-cognate tRNA anticodons explore the aminoacyl-tRNA-binding site (A site) of an open 30S subunit, while inactive EF-Tu is separated from the 50S subunit. A transient conformation of decoding-centre nucleotide G530 stabilizes the cognate codon-anticodon helix, initiating step-wise 'latching' of the decoding centre. The resulting closure of the 30S subunit docks EF-Tu at the sarcin-ricin loop of the 50S subunit, activating EF-Tu for GTP hydrolysis and enabling accommodation of the aminoacyl-tRNA. By contrast, near-cognate complexes fail to induce the G530 latch, thus favouring open 30S pre-accommodation intermediates with inactive EF-Tu. This work reveals long-sought structural differences between the pre-accommodation of cognate and near-cognate tRNAs that elucidate the mechanism of accurate decoding.
基因翻译依赖于对mRNA的准确解码,但其结构机制仍知之甚少。核糖体通过选择延伸因子Tu(EF-Tu)传递的同源氨酰tRNA来解码mRNA密码子。在此,我们展示了核糖体与由EF-Tu传递的同源或近同源氨酰tRNA的高分辨率结构集合。同源和近同源tRNA反密码子都探索开放30S亚基的氨酰tRNA结合位点(A位点),而无活性的EF-Tu与50S亚基分离。解码中心核苷酸G530的瞬时构象稳定同源密码子-反密码子螺旋,启动解码中心的逐步“锁定”。30S亚基的这种闭合将EF-Tu对接在50S亚基的肌动蛋白-蓖麻毒素环处,激活EF-Tu进行GTP水解,并使氨酰tRNA得以容纳。相比之下,近同源复合物无法诱导G530锁定,因此有利于具有无活性EF-Tu的开放30S预容纳中间体。这项工作揭示了同源和近同源tRNA预容纳之间长期寻求的结构差异,阐明了准确解码的机制。