Rojas Julio C, Gonzalez-Lima F
Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX.
Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Eye Brain. 2011 Oct 14;3:49-67. doi: 10.2147/EB.S21391. eCollection 2011.
Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual, neurological, and psychological conditions, and supports that neuronal energy metabolism could constitute a major target for neurotherapeutics of the eye and brain.
近年来,使用红到近红外光能的低强度光疗法(LLLT)作为一种在眼科、神经学和精神病学中有治疗应用的新科学方法受到了关注。由LLLT引领的持续治疗革命在很大程度上是由光生物学和生物能量学等基础科学领域的进展推动的。本文描述了LLLT在分子、细胞和神经组织水平上的作用机制。细胞色素氧化酶活性的光神经调节是LLLT最重要的主要作用机制。细胞色素氧化酶是电磁光谱中红到近红外区域光的主要光受体。它也是细胞生物能量学的关键线粒体酶,特别是对于视网膜和大脑中的神经细胞。有证据表明,LLLT可通过调节线粒体功能、神经元内信号系统和氧化还原状态,继而增强神经代谢。本文还介绍了目前有关LLLT剂量学的知识,这些知识与其对神经组织的 hormetic 效应相关,包括非侵入性体内视网膜和经颅效应。综述了近期的研究,这些研究支持LLLT在视网膜疾病、中风、神经创伤、神经退行性变以及记忆和情绪障碍方面的潜在益处。由于线粒体功能障碍在神经退行性变中起关键作用,LLLT通过对抗线粒体功能衰竭的后果,在预防视网膜和脑损伤方面具有潜在的重要应用。在体内经颅给药时,LLLT可诱导大脑代谢和抗氧化有益效应,这可通过细胞色素氧化酶和超氧化物歧化酶活性的增加来衡量。在人类中也观察到LLLT可诱导脑血流量和认知功能增加。重要的是,以产生有益效应的能量密度给予LLLT不会诱导不良反应。这突出了LLLT作为治疗视觉、神经和心理疾病的新范例的价值,并支持神经元能量代谢可能构成眼和脑神经治疗的主要靶点。