Suppr超能文献

通过交叉压缩熵评估压力反射耦合。

Baroreflex Coupling Assessed by Cross-Compression Entropy.

作者信息

Schumann Andy, Schulz Steffen, Voss Andreas, Scharbrodt Susann, Baumert Mathias, Bär Karl-Jürgen

机构信息

Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital JenaJena, Germany.

Institute of Innovative Health Technologies, Ernst-Abbe-Hochschule Jena, University of Applied Sciences JenaJena, Germany.

出版信息

Front Physiol. 2017 May 10;8:282. doi: 10.3389/fphys.2017.00282. eCollection 2017.

Abstract

Estimating interactions between physiological systems is an important challenge in modern biomedical research. Here, we explore a new concept for quantifying information common in two time series by cross-compressibility. Cross-compression entropy (CCE) exploits the ZIP data compression algorithm extended to bivariate data analysis. First, time series are transformed into symbol vectors. Symbols of the target time series are coded by the symbols of the source series. Uncoupled and linearly coupled surrogates were derived from cardiovascular recordings of 36 healthy controls obtained during rest to demonstrate suitability of this method for assessing physiological coupling. CCE at rest was compared to that of isometric handgrip exercise. Finally, spontaneous baroreflex interaction assessed by CCE was compared between 21 patients suffering from acute schizophrenia and 21 matched controls. The CCE of original time series was significantly higher than in uncoupled surrogates in 89% of the subjects and higher than in linearly coupled surrogates in 47% of the subjects. Handgrip exercise led to sympathetic activation and vagal inhibition accompanied by reduced baroreflex sensitivity. CCE decreased from 0.553 ± 0.030 at rest to 0.514 ± 0.035 during exercise ( < 0.001). In acute schizophrenia, heart rate, and blood pressure were elevated. Heart rate variability indicated a change of sympathovagal balance. The CCE of patients with schizophrenia was reduced compared to healthy controls (0.546 ± 0.042 vs. 0.507 ± 0.046, < 0.01) and revealed a decrease of blood pressure influence on heart rate in patients with schizophrenia. Our results indicate that CCE is suitable for the investigation of linear and non-linear coupling in cardiovascular time series. CCE can quantify causal interactions in short, noisy and non-stationary physiological time series.

摘要

估计生理系统之间的相互作用是现代生物医学研究中的一项重要挑战。在此,我们探索了一种通过交叉压缩性来量化两个时间序列中共同信息的新概念。交叉压缩熵(CCE)利用扩展到双变量数据分析的ZIP数据压缩算法。首先,将时间序列转换为符号向量。目标时间序列的符号由源序列的符号进行编码。从不耦合和线性耦合的替代数据中得出36名健康对照者在静息时的心血管记录,以证明该方法适用于评估生理耦合。将静息时的CCE与等长握力运动时的CCE进行比较。最后,比较了21名急性精神分裂症患者和21名匹配对照者通过CCE评估的自发压力反射相互作用。在89%的受试者中,原始时间序列的CCE显著高于非耦合替代数据,在47%的受试者中高于线性耦合替代数据。握力运动导致交感神经激活和迷走神经抑制,同时压力反射敏感性降低。CCE从静息时的0.553±0.030降至运动时的0.514±0.035(<0.001)。在急性精神分裂症中,心率和血压升高。心率变异性表明交感迷走平衡发生了变化。与健康对照者相比,精神分裂症患者的CCE降低(0.546±0.042对0.507±0.046,<0.01),并且显示精神分裂症患者中血压对心率的影响降低。我们的结果表明,CCE适用于研究心血管时间序列中的线性和非线性耦合。CCE可以量化短时间、有噪声和非平稳生理时间序列中的因果相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae72/5423936/6b66867e05cd/fphys-08-00282-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验