Suppr超能文献

缺氧成像与放射治疗:弥合分辨率差距

Hypoxia imaging and radiotherapy: bridging the resolution gap.

作者信息

Grimes David Robert, Warren Daniel R, Warren Samantha

机构信息

1 Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX37DQ, UK.

2 Centre for Advanced and Interdisciplinary Radiation Research (CAIRR), School of Mathematics and Physics, Queen's University Belfast, UK.

出版信息

Br J Radiol. 2017 Aug;90(1076):20160939. doi: 10.1259/bjr.20160939. Epub 2017 May 25.

Abstract

Oxygen distribution is a major determinant of treatment success in radiotherapy, with well-oxygenated tumour regions responding by up to a factor of three relative to anoxic volumes. Conversely, tumour hypoxia is associated with treatment resistance and negative prognosis. Tumour oxygenation is highly heterogeneous and difficult to measure directly. The recent advent of functional hypoxia imaging modalities such as fluorine-18 fluoromisonidazole positron emission tomography have shown promise in non-invasively determining regions of low oxygen tension. This raises the prospect of selectively increasing dose to hypoxic subvolumes, a concept known as dose painting. Yet while this is a promising approach, oxygen-mediated radioresistance is inherently a multiscale problem, and there are still a number of substantial challenges that must be overcome if hypoxia dose painting is to be successfully implemented. Current imaging modalities are limited by the physics of such systems to have resolutions in the millimetre regime, whereas oxygen distribution varies over a micron scale, and treatment delivery is typically modulated on a centimetre scale. In this review, we examine the mechanistic basis and implications of the radiobiological oxygen effect, the factors influencing microscopic heterogeneity in tumour oxygenation and the consequent challenges in the interpretation of clinical hypoxia imaging (in particular fluorine-18 fluoromisonidazole positron emission tomography). We also discuss dose-painting approaches and outline challenges that must be addressed to improve this treatment paradigm.

摘要

氧分布是放射治疗成功与否的主要决定因素,与缺氧区域相比,富氧肿瘤区域的反应程度可达其三倍。相反,肿瘤缺氧与治疗抵抗和不良预后相关。肿瘤氧合高度不均一且难以直接测量。近年来出现的功能性缺氧成像模式,如氟-18氟米索硝唑正电子发射断层扫描,在无创确定低氧张力区域方面显示出前景。这为选择性增加缺氧亚体积的剂量带来了希望,这一概念被称为剂量描绘。然而,尽管这是一种很有前景的方法,但氧介导的放射抗性本质上是一个多尺度问题,如果要成功实施缺氧剂量描绘,仍有许多重大挑战必须克服。目前的成像模式受此类系统物理特性的限制,分辨率在毫米级别,而氧分布在微米尺度上变化,且治疗给药通常在厘米尺度上进行调制。在本综述中,我们研究了放射生物学氧效应的机制基础和影响,影响肿瘤氧合微观异质性的因素以及临床缺氧成像(特别是氟-18氟米索硝唑正电子发射断层扫描)解读中随之而来的挑战。我们还讨论了剂量描绘方法,并概述了为改进这种治疗模式必须解决的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/818f/5603947/a783e7676d20/bjr.20160939.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验