Suppr超能文献

模拟气候对莫桑比克希莫尤市疟疾发生情况的影响。

Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique.

作者信息

Ferrão João Luís, Mendes Jorge M, Painho Marco

机构信息

Faculdade de Engenharia, Universidade Católica de Moçambique, Chimoio, Mozambique.

NOVA Information Management Scholl, Universidade Nova de Lisboa, Lisbon, Portugal.

出版信息

Parasit Vectors. 2017 May 25;10(1):260. doi: 10.1186/s13071-017-2205-6.

Abstract

BACKGROUND

Mozambique was recently ranked fifth in the African continent for the number of cases of malaria. In Chimoio municipality cases of malaria are increasing annually, contrary to the decreasing trend in Africa. As malaria transmission is influenced to a large extent by climatic conditions, modelling this relationship can provide useful insights for designing precision health measures for malaria control. There is a scarcity of information on the association between climatic variability and malaria transmission risk in Mozambique in general, and in Chimoio in particular. Therefore, the aim of this study is to model the association between climatic variables and malaria cases on a weekly basis, to help policy makers find adequate measures for malaria control and eradication.

METHODS

Time series analysis was conducted using data on weekly climatic variables and weekly malaria cases (counts) in Chimoio municipality, from 2006 to 2014. All data were analysed using SPSS-20, R 3.3.2 and BioEstat 5.0. Cross-correlation analysis, linear processes, namely ARIMA models and regression modelling, were used to develop the final model.

RESULTS

Between 2006 and 2014, 490,561 cases of malaria were recorded in Chimoio. Both malaria and climatic data exhibit weekly and yearly systematic fluctuations. Cross-correlation analysis showed that mean temperature and precipitation present significantly lagged correlations with malaria cases. An ARIMA model (2,1,0) (2,1,1), and a regression model for a Box-Cox transformed number of malaria cases with lags 1, 2 and 3 of weekly malaria cases and lags 6 and 7 of weekly mean temperature and lags 12 of precipitation were fitted. Although, both produced similar widths for prediction intervals, the last was able to anticipate malaria outbreak more accurately.

CONCLUSION

The Chimoio climate seems ideal for malaria occurrence. Malaria occurrence peaks during January to March in Chimoio. As the lag effect between climatic events and malaria occurrence is important for the prediction of malaria cases, this can be used for designing public precision health measures. The model can be used for planning specific measures for Chimoio municipality. Prospective and multidisciplinary research involving researchers from different fields is welcomed to improve the effect of climatic factors and other factors in malaria cases.

摘要

背景

莫桑比克近期在非洲大陆疟疾病例数量排名中位列第五。在希莫尤市,疟疾病例数呈逐年上升趋势,这与非洲整体下降趋势相反。由于疟疾传播在很大程度上受气候条件影响,对这种关系进行建模可为设计精准疟疾防控措施提供有益见解。总体而言,莫桑比克,尤其是希莫尤,关于气候变异性与疟疾传播风险之间关联的信息匮乏。因此,本研究旨在每周对气候变量与疟疾病例之间的关联进行建模,以帮助政策制定者找到疟疾控制和根除的适当措施。

方法

利用希莫尤市2006年至2014年每周气候变量和每周疟疾病例(计数)数据进行时间序列分析。所有数据使用SPSS - 20、R 3.3.2和BioEstat 5.0进行分析。采用交叉相关分析、线性过程(即自回归积分滑动平均模型(ARIMA)模型)和回归建模来构建最终模型。

结果

2006年至2014年期间,希莫尤记录了490,561例疟疾病例。疟疾和气候数据均呈现每周和每年的系统性波动。交叉相关分析表明平均温度和降水量与疟疾病例存在显著的滞后相关性。拟合了一个ARIMA(2,1,0)(2,1,1)模型,以及一个针对经Box - Cox变换的疟疾病例数的回归模型,该模型纳入了每周疟疾病例的滞后1、2和3期以及每周平均温度的滞后6和7期和降水量的滞后12期。尽管两者预测区间宽度相似,但后者能更准确地预测疟疾暴发。

结论

希莫尤的气候似乎非常适合疟疾发生。希莫尤的疟疾发病高峰出现在1月至3月。由于气候事件与疟疾发生之间的滞后效应对于疟疾病例预测很重要,这可用于设计公共精准健康措施。该模型可用于为希莫尤市规划具体措施。欢迎不同领域的研究人员开展前瞻性和多学科研究,以提高气候因素及其他因素对疟疾病例的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c9c/5445389/dd8fce09c861/13071_2017_2205_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验