Suppr超能文献

探讨多哥的疟疾预测模型:按卫生区和目标群体进行时间序列预测。

Exploring malaria prediction models in Togo: a time series forecasting by health district and target group.

机构信息

Université de Lyon, Lyon, France

Université Lyon 1, Villeurbanne, France.

出版信息

BMJ Open. 2024 Jan 30;14(1):e066547. doi: 10.1136/bmjopen-2022-066547.

Abstract

OBJECTIVES

Integrating malaria prediction models into malaria control strategies can help to anticipate the response to seasonal epidemics. This study aimed to explore the possibility of using routine malaria data and satellite-derived climate data to forecast malaria cases in Togo.

METHODS

Generalised additive (mixed) models were developed to forecast the monthly number of malaria cases in 40 health districts and three target groups. Routinely collected malaria data from 2013 to 2016 and meteorological and vegetation data with a time lag of 1 or 2 months were used for model training, while the year 2017 was used for model testing. Two methods for selecting lagged meteorological and environmental variables were compared: a first method based on statistical approach ('SA') and a second method based on biological reasoning ('BR'). Both methods were applied to obtain a model per target group and health district and a mixed model per target group and health region with the health district as a random effect. The predictive skills of the four models were compared for each health district and target group.

RESULTS

The most selected predictors in the models per district for the 'SA' method were the normalised difference vegetation index, minimum temperature and mean temperature. The 'SA' method provided the most accurate models for the training period, except for some health districts in children ≥5 years old and adults and in pregnant women. The most accurate models for the testing period varied by health district and target group, provided either by the 'SA' method or the 'BR' method. Despite the development of models with four different approaches, the number of malaria cases was inaccurately forecasted.

CONCLUSIONS

These models cannot be used as such in malaria control activities in Togo. The use of finer spatial and temporal scales and non-environmental data could improve malaria prediction.

摘要

目的

将疟疾预测模型整合到疟疾控制策略中可以帮助预测季节性流行的反应。本研究旨在探索利用常规疟疾数据和卫星衍生气候数据预测多哥疟疾病例的可能性。

方法

采用广义加性(混合)模型预测 40 个卫生区和 3 个目标人群的每月疟疾病例数。使用 2013 年至 2016 年常规收集的疟疾数据以及滞后 1 或 2 个月的气象和植被数据进行模型训练,而 2017 年则用于模型测试。比较了两种选择滞后气象和环境变量的方法:一种基于统计方法的第一种方法(“SA”)和一种基于生物学推理的第二种方法(“BR”)。两种方法都用于为每个目标群体和卫生区获得一个模型,以及为每个目标群体和卫生地区获得一个混合模型,其中卫生区为随机效应。比较了这四种模型在每个卫生区和目标群体中的预测能力。

结果

“SA”方法中每个区模型中选择的最主要预测因子是归一化植被指数、最低温度和平均温度。“SA”方法除了一些 5 岁以上儿童和成人以及孕妇的卫生区外,为训练期提供了最准确的模型。测试期最准确的模型因卫生区和目标群体而异,由“SA”方法或“BR”方法提供。尽管采用了四种不同方法开发模型,但疟疾病例数量的预测仍不准确。

结论

这些模型不能在多哥的疟疾控制活动中直接使用。使用更精细的时空尺度和非环境数据可以提高疟疾预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaac/10828885/ecaa35c1e5bf/bmjopen-2022-066547f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验