Suppr超能文献

用于对自然刺激神经反应进行组分析的刺激信息广义典型相关分析

Stimulus-Informed Generalized Canonical Correlation Analysis for Group Analysis of Neural Responses to Natural Stimuli.

作者信息

Geirnaert Simon, Yao Yuanyuan, Francart Tom, Bertrand Alexander

出版信息

IEEE J Biomed Health Inform. 2025 Feb;29(2):970-983. doi: 10.1109/JBHI.2024.3462991. Epub 2025 Feb 10.

Abstract

Various new brain-computer interface technologies or neuroscience applications require decoding stimulus-following neural responses to natural stimuli such as speech and video from, e.g., electroencephalography (EEG) signals. In this context, generalized canonical correlation analysis (GCCA) is often used as a group analysis technique, which allows the extraction of correlated signal components from the neural activity of multiple subjects attending to the same stimulus. GCCA can be used to improve the signal-to-noise ratio of the stimulus-following neural responses relative to all other irrelevant (non-)neural activity, or to quantify the correlated neural activity across multiple subjects in a group-wise coherence metric. However, the traditional GCCA technique is stimulus-unaware: no information about the stimulus is used to estimate the correlated components from the neural data of several subjects. Therefore, the GCCA technique might fail to extract relevant correlated signal components in practical situations where the amount of information is limited, for example, because of a limited amount of training data or group size. This motivates a new stimulus-informed GCCA (SI-GCCA) framework that allows taking the stimulus into account to extract the correlated components. We show that SI-GCCA outperforms GCCA in various practical settings, for both auditory and visual stimuli. Moreover, we showcase how SI-GCCA can be used to steer the estimation of the components towards the stimulus. As such, SI-GCCA substantially improves upon GCCA for various purposes, ranging from preprocessing to quantifying attention.

摘要

各种新型脑机接口技术或神经科学应用需要从脑电图(EEG)信号中解码对诸如语音和视频等自然刺激的刺激跟随神经反应。在这种情况下,广义典型相关分析(GCCA)经常被用作一种组分析技术,它允许从多个关注同一刺激的受试者的神经活动中提取相关信号成分。GCCA可用于提高刺激跟随神经反应相对于所有其他无关(非)神经活动的信噪比,或在组内相干度量中量化多个受试者之间的相关神经活动。然而,传统的GCCA技术对刺激不敏感:在从多个受试者的神经数据中估计相关成分时未使用关于刺激的任何信息。因此,在信息有限的实际情况下,例如由于训练数据量或组规模有限,GCCA技术可能无法提取相关的相关信号成分。这促使了一种新的刺激知情GCCA(SI-GCCA)框架的产生,该框架允许考虑刺激来提取相关成分。我们表明,在各种实际设置中,对于听觉和视觉刺激,SI-GCCA都优于GCCA。此外,我们展示了SI-GCCA如何用于将成分估计引导至刺激。因此,SI-GCCA在从预处理到量化注意力等各种目的上都比GCCA有显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验