Suppr超能文献

针对核受体治疗脂肪肝。

Targeting nuclear receptors for the treatment of fatty liver disease.

机构信息

Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan.

Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan.

出版信息

Pharmacol Ther. 2017 Nov;179:142-157. doi: 10.1016/j.pharmthera.2017.05.011. Epub 2017 May 23.

Abstract

Ligand-activated nuclear receptors, including peroxisome proliferator-activated receptor alpha (PPARα), pregnane X receptor, and constitutive androstane receptor, were first identified as key regulators of the responses against chemical toxicants. However, numerous studies using mouse disease models and human samples have revealed critical roles for these receptors and others, such as PPARβ/δ, PPARγ, farnesoid X receptor (FXR), and liver X receptor (LXR), in maintaining nutrient/energy homeostasis in part through modulation of the gut-liver-adipose axis. Recently, disorders associated with disrupted nutrient/energy homeostasis, e.g., obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD), are increasing worldwide. Notably, in NAFLD, a progressive subtype exists, designated as non-alcoholic steatohepatitis (NASH) that is characterized by typical histological features resembling alcoholic steatohepatitis (ASH), and NASH/ASH are recognized as major causes of hepatitis virus-unrelated liver cirrhosis and hepatocellular carcinoma. Since hepatic steatosis is basically caused by an imbalance between fat/energy influx and utilization, abnormal signaling of these nuclear receptors contribute to the pathogenesis of fatty liver disease. Standard therapeutic interventions have not been fully established for fatty liver disease, but some new agents that activate or inhibit nuclear receptor signaling have shown promise as possible therapeutic targets. In this review, we summarize recent findings on the roles of nuclear receptors in fatty liver disease and discuss future perspectives to develop promising pharmacological strategies targeting nuclear receptors for NAFLD/NASH.

摘要

配体激活的核受体,包括过氧化物酶体增殖物激活受体 α (PPARα)、妊娠相关 X 受体和组成型雄烷受体,最初被鉴定为应对化学毒物反应的关键调节剂。然而,大量使用小鼠疾病模型和人类样本的研究揭示了这些受体和其他受体(如 PPARβ/δ、PPARγ、法尼醇 X 受体 (FXR) 和肝 X 受体 (LXR))在维持营养/能量平衡中的关键作用,部分是通过调节肠道-肝脏-脂肪轴实现的。最近,与营养/能量平衡失调相关的疾病,如肥胖症、代谢综合征和非酒精性脂肪性肝病 (NAFLD),在全球范围内呈上升趋势。值得注意的是,在 NAFLD 中,存在一种进行性亚型,称为非酒精性脂肪性肝炎 (NASH),其特征是具有类似于酒精性脂肪性肝炎 (ASH)的典型组织学特征,并且 NASH/ASH 被认为是与肝炎病毒无关的肝硬化和肝细胞癌的主要原因。由于肝脂肪变性基本上是由脂肪/能量流入和利用之间的失衡引起的,这些核受体的异常信号转导导致脂肪性肝病的发病机制。尽管针对脂肪性肝病的标准治疗干预措施尚未完全建立,但一些激活或抑制核受体信号转导的新型药物已显示出作为潜在治疗靶点的希望。在这篇综述中,我们总结了核受体在脂肪性肝病中的作用的最新发现,并讨论了开发针对 NAFLD/NASH 的有前途的核受体靶向药理学策略的未来展望。

相似文献

1
Targeting nuclear receptors for the treatment of fatty liver disease.
Pharmacol Ther. 2017 Nov;179:142-157. doi: 10.1016/j.pharmthera.2017.05.011. Epub 2017 May 23.
2
Modulation of xenobiotic nuclear receptors in high-fat diet induced non-alcoholic fatty liver disease.
Toxicology. 2018 Dec 1;410:199-213. doi: 10.1016/j.tox.2018.08.007. Epub 2018 Aug 16.
3
Nuclear receptors and nonalcoholic fatty liver disease.
Biochim Biophys Acta. 2016 Sep;1859(9):1083-1099. doi: 10.1016/j.bbagrm.2016.03.002. Epub 2016 Mar 4.
4
Free radical biology for medicine: learning from nonalcoholic fatty liver disease.
Free Radic Biol Med. 2013 Dec;65:952-968. doi: 10.1016/j.freeradbiomed.2013.08.174. Epub 2013 Aug 29.
5
Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells.
Drug Metab Dispos. 2018 Apr;46(4):326-335. doi: 10.1124/dmd.117.078675. Epub 2018 Jan 12.
7
Transcriptional Regulation of Metabolic Pathways via Lipid-Sensing Nuclear Receptors PPARs, FXR, and LXR in NASH.
Cell Mol Gastroenterol Hepatol. 2021;11(5):1519-1539. doi: 10.1016/j.jcmgh.2021.01.012. Epub 2021 Feb 2.
8
Nonalcoholic fatty liver disease: pathogenesis and potential for nuclear receptors as therapeutic targets.
Mol Pharm. 2008 Jan-Feb;5(1):49-59. doi: 10.1021/mp700110z. Epub 2007 Dec 12.
9
Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease.
Semin Liver Dis. 2016 Feb;36(1):69-86. doi: 10.1055/s-0036-1571296. Epub 2016 Feb 12.

引用本文的文献

2
RXR modulates hepatic stellate cell activation and liver fibrosis by targeting CaMKK-AMPK axis.
Acta Pharm Sin B. 2025 Jul;15(7):3611-3631. doi: 10.1016/j.apsb.2025.05.023. Epub 2025 May 26.
4
Mangiferin mitigates dexamethasone-induced insulin resistance in rats: insight into vascular dysfunction and hepatic steatosis.
Front Pharmacol. 2025 May 8;16:1572758. doi: 10.3389/fphar.2025.1572758. eCollection 2025.
5
AI-Based Platelet-Independent Noninvasive Test for Liver Fibrosis in MASLD Patients.
JGH Open. 2025 Apr 4;9(4):e70150. doi: 10.1002/jgh3.70150. eCollection 2025 Apr.
6
Potential therapeutic strategies for MASH: from preclinical to clinical development.
Life Metab. 2024 Jul 6;3(5):loae029. doi: 10.1093/lifemeta/loae029. eCollection 2024 Oct.
7
Review of Current and Upcoming Second-Line Treatments for Primary Biliary Cholangitis.
Dig Dis Sci. 2025 Jan;70(1):100-110. doi: 10.1007/s10620-024-08742-w. Epub 2024 Dec 2.
8
Elafibranor alleviates alcohol-related liver fibrosis by restoring intestinal barrier function.
World J Gastroenterol. 2024 Nov 21;30(43):4660-4668. doi: 10.3748/wjg.v30.i43.4660.
9
Mechanisms of Bioactive Lipids to Modulate Master Regulators of Lipid Homeostasis and Inflammation in Metabolic Syndrome.
Curr Pharm Biotechnol. 2025;26(11):1755-1776. doi: 10.2174/0113892010340506241014112341.

本文引用的文献

1
An Intestinal Farnesoid X Receptor-Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice.
Diabetes. 2017 Mar;66(3):613-626. doi: 10.2337/db16-0663. Epub 2016 Nov 8.
2
Association between endotoxemia and histological features of nonalcoholic fatty liver disease.
World J Gastroenterol. 2017 Jan 28;23(4):712-722. doi: 10.3748/wjg.v23.i4.712.
3
Current and emergent pharmacologic treatments for irritable bowel syndrome with diarrhea: evidence-based treatment in practice.
Therap Adv Gastroenterol. 2017 Feb;10(2):253-275. doi: 10.1177/1756283X16663396. Epub 2016 Sep 16.
4
Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells.
Am J Physiol Gastrointest Liver Physiol. 2017 Mar 1;312(3):G283-G299. doi: 10.1152/ajpgi.00205.2016. Epub 2017 Jan 12.
5
Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice.
Gastroenterology. 2017 Apr;152(5):1126-1138.e6. doi: 10.1053/j.gastro.2016.12.037. Epub 2017 Jan 5.
6
Roles of Peroxisome Proliferator-Activated Receptor β/δ in skeletal muscle physiology.
Biochimie. 2017 May;136:42-48. doi: 10.1016/j.biochi.2016.11.010. Epub 2016 Dec 2.
7
Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis.
Cancer Cell. 2016 Dec 12;30(6):909-924. doi: 10.1016/j.ccell.2016.10.007. Epub 2016 Nov 23.
8
Role of the lipid-regulated NF-κB/IL-6/STAT3 axis in alpha-naphthyl isothiocyanate-induced liver injury.
Arch Toxicol. 2017 May;91(5):2235-2244. doi: 10.1007/s00204-016-1877-6. Epub 2016 Nov 16.
9
PPARα protects against trans-fatty-acid-containing diet-induced steatohepatitis.
J Nutr Biochem. 2017 Jan;39:77-85. doi: 10.1016/j.jnutbio.2016.09.015. Epub 2016 Oct 11.
10
An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease.
Gastroenterology. 2016 Nov;151(5):845-859. doi: 10.1053/j.gastro.2016.08.057. Epub 2016 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验