Suppr超能文献

肋骨几何形状解释了动态结构响应的变化:对正面冲击骨折风险的潜在影响。

Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk.

机构信息

Injury Biomechanics Research Center, The Ohio State University, 2063 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA.

Department of Orthopaedic Surgery, University of Michigan, Biomedical Sciences Research Building, Ann Arbor, MI, 48109, USA.

出版信息

Ann Biomed Eng. 2017 Sep;45(9):2159-2173. doi: 10.1007/s10439-017-1850-4. Epub 2017 May 25.

Abstract

The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p < 0.001) by rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax.

摘要

人的胸部在机动车事故中经常受伤,尽管乘员安全方面取得了进步,但肋骨骨折仍然非常普遍。本研究的目的是定量分析整体和横截面几何形状单独和组合使用时,解释人体肋骨结构特性变化的能力。122 根完整的中层肋骨来自 76 具新鲜的法医死后人体标本,在动态正面冲击场景中进行了测试。通过直接组织学成像获得的肋骨横截面几何形状(总面积、皮质面积和截面模数)成功地预测了结构特性(峰值力和刚度)(p<0.001),并且当利用横截面和整体几何形状的组合时,预测结果得到了进一步改善(粗壮度、整体骨强度指数)。此外,初步应用一种新颖的自适应阈值技术,允许在具有不同成功率的标准临床 CT 扫描的子样本上测量总面积和粗壮度。这些结果可用于了解个体肋骨对正面加载的反应的变化,并确定重要的几何参数,这最终可能会改进损伤标准以及人体胸部的仿人测试设备(ATD)和有限元(FE)模型的生物逼真度。

相似文献

1
Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk.
Ann Biomed Eng. 2017 Sep;45(9):2159-2173. doi: 10.1007/s10439-017-1850-4. Epub 2017 May 25.
2
Detailed subject-specific FE rib modeling for fracture prediction.
Traffic Inj Prev. 2019;20(sup2):S88-S95. doi: 10.1080/15389588.2019.1665649. Epub 2019 Oct 7.
4
Population trends in human rib cross-sectional shapes.
J Anat. 2024 May;244(5):792-802. doi: 10.1111/joa.13999. Epub 2024 Jan 10.
5
Real-World Rib Fracture Patterns in Frontal Crashes in Different Restraint Conditions.
Traffic Inj Prev. 2015;16 Suppl 2:S115-23. doi: 10.1080/15389588.2015.1062888.
6
Age and sex alone are insufficient to predict human rib structural response to dynamic A-P loading.
J Biomech. 2016 Oct 3;49(14):3516-3522. doi: 10.1016/j.jbiomech.2016.09.030. Epub 2016 Sep 23.
7
The effect of age on the structural properties of human ribs.
J Mech Behav Biomed Mater. 2015 Jan;41:302-14. doi: 10.1016/j.jmbbm.2014.09.002. Epub 2014 Sep 16.
8
Comparing FE human body model rib geometry to population data.
Biomech Model Mechanobiol. 2020 Dec;19(6):2227-2239. doi: 10.1007/s10237-020-01335-2. Epub 2020 May 22.
9
Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.
Med Eng Phys. 2010 Nov;32(9):998-1008. doi: 10.1016/j.medengphy.2010.06.015. Epub 2010 Jul 31.
10
A novel ex vivo model of compressive immature rib fractures at pathophysiological rates of loading.
J Mech Behav Biomed Mater. 2015 Nov;51:154-62. doi: 10.1016/j.jmbbm.2015.06.031. Epub 2015 Jul 16.

引用本文的文献

3
Population trends in human rib cross-sectional shapes.
J Anat. 2024 May;244(5):792-802. doi: 10.1111/joa.13999. Epub 2024 Jan 10.
4
Functionally graded 3D printed plates for rib fracture fixation.
Clin Biomech (Bristol). 2024 Jan;111:106151. doi: 10.1016/j.clinbiomech.2023.106151. Epub 2023 Nov 11.
5
Cross-sectional properties of rib geometry from an adult population.
Front Bioeng Biotechnol. 2023 May 22;11:1158242. doi: 10.3389/fbioe.2023.1158242. eCollection 2023.
6
Influences of human thorax variability on population rib fracture risk prediction using human body models.
Front Bioeng Biotechnol. 2023 Mar 23;11:1154272. doi: 10.3389/fbioe.2023.1154272. eCollection 2023.
7
Rib cortical bone thickness variation in adults by age and sex.
J Anat. 2022 Dec;241(6):1344-1356. doi: 10.1111/joa.13751. Epub 2022 Aug 25.
8
Experimental study exploring the factors that promote rib fragility in the elderly.
Sci Rep. 2021 Apr 29;11(1):9307. doi: 10.1038/s41598-021-88800-9.
9
Comparing rib cortical thickness measurements from computed tomography (CT) and Micro-CT.
Comput Biol Med. 2019 Aug;111:103330. doi: 10.1016/j.compbiomed.2019.103330. Epub 2019 Jun 14.
10
Regional maps of rib cortical bone thickness and cross-sectional geometry.
J Anat. 2019 Nov;235(5):883-891. doi: 10.1111/joa.13045. Epub 2019 Jun 21.

本文引用的文献

1
The Effect of Rib Shape on Stiffness.
Stapp Car Crash J. 2016 Nov;60:11-24. doi: 10.4271/2016-22-0002.
2
Age and sex alone are insufficient to predict human rib structural response to dynamic A-P loading.
J Biomech. 2016 Oct 3;49(14):3516-3522. doi: 10.1016/j.jbiomech.2016.09.030. Epub 2016 Sep 23.
3
Real-World Rib Fracture Patterns in Frontal Crashes in Different Restraint Conditions.
Traffic Inj Prev. 2015;16 Suppl 2:S115-23. doi: 10.1080/15389588.2015.1062888.
4
The effect of age on the structural properties of human ribs.
J Mech Behav Biomed Mater. 2015 Jan;41:302-14. doi: 10.1016/j.jmbbm.2014.09.002. Epub 2014 Sep 16.
5
Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.
J Mech Behav Biomed Mater. 2015 Jan;41:292-301. doi: 10.1016/j.jmbbm.2014.07.036. Epub 2014 Aug 8.
6
Mapping the natural variation in whole bone stiffness and strength across skeletal sites.
Bone. 2014 Oct;67:15-22. doi: 10.1016/j.bone.2014.06.031. Epub 2014 Jul 2.
7
Intracortical remodeling parameters are associated with measures of bone robustness.
Anat Rec (Hoboken). 2014 Oct;297(10):1817-28. doi: 10.1002/ar.22962. Epub 2014 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验