Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.
Nat Commun. 2017 May 26;8:15376. doi: 10.1038/ncomms15376.
The controlled creation of defect centre-nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.
控制缺陷中心-纳米腔系统的创建是将自旋量子存储器与光子有效地接口,用于量子网络中基于光子的纠缠操作的突出挑战之一。在这里,我们通过聚焦离子束注入证明了在金刚石纳米结构中直接、无掩模地创建原子状单硅空位(SiV)中心,其横向精度约为 32nm,相对于纳米腔的定位精度小于 50nm。我们确定 Si+离子到 SiV 中心的转换产率约为 2.5%,并通过额外的电子辐照观察到转换产率增加了 10 倍。低温光谱显示,不均匀展宽的集体发射线宽约为 51GHz,接近寿命限制的单发射器跃迁线宽低至 126±13MHz,对应于自然线宽的约 1.4 倍。这种用于近乎变换限制量子发射器的靶向生成的方法应该有助于可扩展的固态量子信息处理器的发展。