Suppr超能文献

大规模集成人工原子于混合光子电路中。

Large-scale integration of artificial atoms in hybrid photonic circuits.

机构信息

Research Laboratory of Electronics, MIT, Cambridge, MA, USA.

University of California Berkeley, Berkeley, CA, USA.

出版信息

Nature. 2020 Jul;583(7815):226-231. doi: 10.1038/s41586-020-2441-3. Epub 2020 Jul 8.

Abstract

A central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits. Colour centres in diamond have emerged as leading solid-state 'artificial atom' qubits because they enable on-demand remote entanglement, coherent control of over ten ancillae qubits with minute-long coherence times and memory-enhanced quantum communication. A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of 'quantum microchiplets'-diamond waveguide arrays containing highly coherent colour centres-on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearly indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters and general-purpose quantum processors.

摘要

在开发量子计算机和长程量子网络时,一个核心挑战是在许多可单独控制的量子比特中分配纠缠。钻石中的色心已成为领先的固态“人工原子”量子比特,因为它们能够按需远程纠缠、用长达数分钟的相干时间对超过十个辅助量子比特进行相干控制,以及增强记忆的量子通信。下一步的关键是将大量人工原子与光子结构集成,以实现大规模量子信息处理系统。到目前为止,这些努力受到了量子比特不均匀性、低器件产量和复杂器件要求的阻碍。在这里,我们引入了一种用于高效异质集成“量子微芯片”的方法——包含高度相干色心的钻石波导阵列——在光子集成电路(PIC)上。我们使用该工艺在氮化铝 PIC 上实现了 128 通道、无缺陷的锗空位和硅空位色心阵列。光致发光光谱表明,锗空位(硅空位)发射器的长期、稳定且窄的平均光线宽为 54 兆赫(146 兆赫),接近 32 兆赫(93 兆赫)的寿命限制线宽。我们表明,单个色心光学跃迁的不均匀性可以通过集成调谐在 50 吉赫以上来原位补偿,而不会降低线宽。将大量几乎无法区分和可调谐的人工原子组装到具有稳定相位的 PIC 中,这是迈向复用量子中继器和通用量子处理器的关键一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验