Department of Physics, Harvard University, Cambridge, MA 02138, USA.
Russian Quantum Center, Skolkovo, Moscow 143025, Russia.
Science. 2016 Nov 18;354(6314):847-850. doi: 10.1126/science.aah6875. Epub 2016 Oct 13.
Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable optical nonlinearities at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to diamond nanodevices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable states and observe optical switching at the single-photon level. Raman transitions are used to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. By measuring intensity correlations of indistinguishable Raman photons emitted into a single waveguide, we observe a quantum interference effect resulting from the superradiant emission of two entangled SiV centers.
高效的光子与量子发射器接口是量子网络的基础,可以在单光子水平上实现光学非线性。我们展示了一种基于硅空位(SiV)色心与金刚石纳米器件耦合的可扩展量子纳米光子学集成平台。通过将 SiV 中心置于金刚石光子晶体腔体内,我们实现了由单个色心控制的量子光学开关。我们利用 SiV 亚稳态来控制开关,并观察到单光子水平的光学开关。拉曼跃迁被用来在金刚石波导中实现具有可调谐频率和带宽的单光子源。通过测量单波导中发射的不可分辨的拉曼光子的强度相关性,我们观察到由两个纠缠的 SiV 中心的超辐射发射引起的量子干涉效应。