Gonzalez Cleotilde, Fakhari Pegah, Busemeyer Jerome
Carnegie Mellon University, Pittsburgh, Pennsylvania.
Indiana University, Bloomington.
Hum Factors. 2017 Aug;59(5):713-721. doi: 10.1177/0018720817710347. Epub 2017 May 26.
The aim of this manuscript is to provide a review of contemporary research and applications on dynamic decision making (DDM).
Since early DDM studies, there has been little systematic progress in understanding decision making in complex, dynamic systems. Our review contributes to better understanding of decision making processes in dynamic tasks.
We discuss new research directions in DDM to highlight the value of simplification in the study of complex decision processes, divided into experimental and theoretical/computational approaches, and focus on problems involving control tasks and search-and-choice tasks. In computational modeling, we discuss recent developments in instance-based learning and reinforcement learning that advance modeling the processes of dynamic decisions.
Results from DDM research reflect a trend to scale down the complexity of DDM tasks to facilitate the study of the process of decision making. Recent research focuses on the dynamic complexity emerging from the interactions of actions and outcomes over time even in simple dynamic tasks.
The study of DDM in theory and practice continues to be a priority area of research. New research directions can help the human factors community to understand the effects of experience, knowledge, and adaption processes in DDM tasks, but research challenges remain to be addressed, and the recent perspectives discussed can help advance a systematic DDM research program.
Classical domains, such as automated pilot systems, fighting fires, and medical emergencies, continue to be central applications of basic DDM research, but new domains, such as cybersecurity, climate change, and forensic science, are emerging as other important applications.
本文旨在对动态决策(DDM)的当代研究及应用进行综述。
自早期动态决策研究以来,在理解复杂动态系统中的决策方面几乎没有系统性进展。我们的综述有助于更好地理解动态任务中的决策过程。
我们讨论动态决策的新研究方向,以突出在复杂决策过程研究中简化的价值,分为实验方法和理论/计算方法,并聚焦于涉及控制任务和搜索与选择任务的问题。在计算建模方面,我们讨论基于实例学习和强化学习的最新进展,这些进展推动了对动态决策过程的建模。
动态决策研究的结果反映出一种趋势,即降低动态决策任务的复杂性,以促进对决策过程的研究。近期研究关注即使在简单动态任务中,随着时间推移行动与结果相互作用所产生的动态复杂性。
动态决策的理论与实践研究仍然是一个优先研究领域。新的研究方向有助于人因工程学界理解动态决策任务中经验、知识和适应过程的影响,但仍有待解决研究挑战,并且所讨论的近期观点有助于推进系统的动态决策研究计划。
经典领域,如自动驾驶系统、灭火和医疗急救,仍然是基础动态决策研究的核心应用,但新领域(如网络安全、气候变化和法医学)正成为其他重要应用。