Nguyen Thuy Ngoc, Gonzalez Cleotilde
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
Behav Res Methods. 2024 Mar;56(3):2311-2332. doi: 10.3758/s13428-023-02149-7. Epub 2023 Aug 8.
Many aspects of humans' dynamic decision-making (DDM) behaviors have been studied with computer-simulated games called microworlds. However, most microworlds only emphasize specific elements of DDM and are inflexible in generating a variety of environments and experimental designs. Moreover, despite the ubiquity of gridworld games for Artificial Intelligence (AI) research, only some tools exist to aid in the development of browser-based gridworld environments for studying the dynamics of human decision-making behavior. To address these issues, we introduce Minimap, a dynamic interactive game to examine DDM in search and rescue missions, which incorporates all the essential characteristics of DDM and offers a wide range of flexibility regarding experimental setups and the creation of experimental scenarios. Minimap specifically allows customization of dynamics, complexity, opaqueness, and dynamic complexity when designing a DDM task. Minimap also enables researchers to visualize and replay recorded human trajectories for the analysis of human behavior. To demonstrate the utility of Minimap, we present a behavioral experiment that examines the impact of different degrees of structural complexity coupled with the opaqueness of the environment on human decision-making performance under time constraints. We discuss the potential applications of Minimap in improving productivity and transparent replications of human behavior and human-AI teaming research. We made Minimap an open-source tool, freely available at https://github.com/DDM-Lab/MinimapInteractiveDDMGame .
许多人类动态决策(DDM)行为的方面都已经通过计算机模拟游戏(称为微观世界)进行了研究。然而,大多数微观世界只强调 DDM 的特定元素,并且在生成各种环境和实验设计方面缺乏灵活性。此外,尽管网格世界游戏在人工智能(AI)研究中无处不在,但仅存在一些工具来辅助开发基于浏览器的网格世界环境,以研究人类决策行为的动态。为了解决这些问题,我们引入了 Minimap,这是一种动态交互游戏,用于研究搜索和救援任务中的 DDM,它包含了 DDM 的所有基本特征,并在实验设置和实验场景的创建方面提供了广泛的灵活性。Minimap 特别允许在设计 DDM 任务时自定义动态性、复杂性、不透明性和动态复杂性。Minimap 还使研究人员能够可视化和重放记录的人类轨迹,以分析人类行为。为了展示 Minimap 的实用性,我们提出了一个行为实验,该实验考察了在时间限制下,不同程度的结构复杂性与环境不透明性相结合对人类决策表现的影响。我们讨论了 Minimap 在提高生产力和透明复制人类行为以及人类-AI 团队合作研究方面的潜在应用。我们将 Minimap 作为一个开源工具,可在 https://github.com/DDM-Lab/MinimapInteractiveDDMGame 上免费获取。