基于泡沫镍负载的 RGO/AuNPs/N-掺杂 CNTs 作为酶生物燃料电池的阳极。

RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.

出版信息

Biosens Bioelectron. 2017 Nov 15;97:34-40. doi: 10.1016/j.bios.2017.05.030. Epub 2017 May 17.

Abstract

In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs.

摘要

在这项研究中,三维还原氧化石墨烯/金纳米粒子/氮掺杂碳纳米管(RGO/Au NPs/N-掺杂 CNTs)组装体负载在泡沫镍上作为酶生物燃料电池(EBFCs)的阳极。三维 RGO/Au NPs 通过在泡沫镍(Ni 泡沫)上电沉积还原氧化石墨烯来获得,而 Au NPs 在沉积过程中共同沉积。之后,通过简单的化学气相沉积(CVD)过程,氮掺杂 CNTs(N-CNTs)在 3D RGO/Au NPs 的表面上无缝生长。在这种纳米结构中,Au NPs 的共沉积和氮掺杂为生物电催化提供了更多的活性位点。此外,N-CNTs 提供了高的比表面积用于酶的固定化,并促进了葡萄糖氧化酶(GOx)和电极之间的电子转移。所得的生物阳极实现了高效的葡萄糖氧化,电流密度高达 7.02mAcm(0.3V 与 Ag/AgCl 相比)。与 Pt 阴极耦合,所制备的葡萄糖/空气生物燃料电池的开路电位为 0.32V,并在 0.15V 时产生最大功率密度 235µWcm。这种新型电极基底在生物电化学系统中的电流密度方面表现出了高性能,并且可以用于进一步开发三维碳基纳米材料在 EBFCs 中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索