Suppr超能文献

通过臭氧辅助超声处理从天然石墨中剥离和分散多层石墨烯的简单技术

Simple Technique of Exfoliation and Dispersion of Multilayer Graphene from Natural Graphite by Ozone-Assisted Sonication.

作者信息

Lin Zaw, Karthik Paneer Selvam, Hada Masaki, Nishikawa Takeshi, Hayashi Yasuhiko

机构信息

Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.

出版信息

Nanomaterials (Basel). 2017 May 27;7(6):125. doi: 10.3390/nano7060125.

Abstract

Owing to its unique properties, graphene has attracted tremendous attention in many research fields. There is a great space to develop graphene synthesis techniques by an efficient and environmentally friendly approach. In this paper, we report a facile method to synthesize well-dispersed multilayer graphene (MLG) without using any chemical reagents or organic solvents. This was achieved by the ozone-assisted sonication of the natural graphite in a water medium. The frequency or number of ozone treatments plays an important role for the dispersion in the process. The possible mechanism of graphene exfoliation and the introduction of functional groups have been postulated. The experimental setup is unique for ozone treatment and enables the elimination of ozone off-gas. The heat generated by the dissipation of ultrasonic waves was used as it is, and no additional heat was supplied. The graphene dispersion was stable, and no evidence of aggregation was observed---even after several months. The characterization results show that well-dispersed MLG was successfully synthesized without any significant damage to the overall structure. The graphene obtained by this method has potential applications in composite materials, conductive coatings, energy storage, and electronic devices.

摘要

由于其独特的性质,石墨烯在许多研究领域引起了极大的关注。通过高效且环保的方法来开发石墨烯合成技术有着广阔的空间。在本文中,我们报道了一种无需使用任何化学试剂或有机溶剂就能合成出分散良好的多层石墨烯(MLG)的简便方法。这是通过在水介质中对天然石墨进行臭氧辅助超声处理实现的。臭氧处理的频率或次数在该过程的分散中起着重要作用。已推测出石墨烯剥离及官能团引入的可能机制。该实验装置在臭氧处理方面独具特色,能够消除臭氧废气。超声波消散产生的热量直接被利用,无需额外供热。石墨烯分散液很稳定,即使经过几个月也未观察到聚集迹象。表征结果表明,成功合成了分散良好的多层石墨烯,且整体结构未受到任何显著破坏。通过这种方法获得的石墨烯在复合材料、导电涂层、能量存储及电子器件等方面具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a40/5485772/20d69f5988c2/nanomaterials-07-00125-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验