Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA.
Nat Microbiol. 2017 May 30;2:17087. doi: 10.1038/nmicrobiol.2017.87.
Cellulosomes are large, multiprotein complexes that tether plant biomass-degrading enzymes together for improved hydrolysis. These complexes were first described in anaerobic bacteria, where species-specific dockerin domains mediate the assembly of enzymes onto cohesin motifs interspersed within protein scaffolds. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic biology. For decades, analogous structures have been reported in anaerobic fungi, which are known to assemble by sequence-divergent non-catalytic dockerin domains (NCDDs). However, the components, modular assembly mechanism and functional role of fungal cellulosomes remain unknown. Here, we describe a comprehensive set of proteins critical to fungal cellulosome assembly, including conserved scaffolding proteins unique to the Neocallimastigomycota. High-quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single-molecule technology. Genomic analysis coupled with proteomic validation revealed an average of 312 NCDD-containing proteins per fungal strain, which were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across four genera that bind to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. However, the biocatalytic activity of anaerobic fungal cellulosomes is expanded by the inclusion of GH3, GH6 and GH45 enzymes. These findings suggest that the fungal cellulosome is an evolutionarily chimaeric structure-an independently evolved fungal complex that co-opted useful activities from bacterial neighbours within the gut microbiome.
细胞体是一种大型的多蛋白复合物,它将植物生物质降解酶系锚定在一起,以提高水解效率。这些复合物最初是在厌氧菌中被描述的,其中特定于物种的 dockerin 结构域介导酶组装到散布在蛋白支架内的 cohesin 基序上。细菌 cohesin-dockerin 相互作用赋予的多功能蛋白组装机制现在是合成生物学的标准设计原则。几十年来,在已知通过序列差异的非催化 dockerin 结构域 (NCDD) 进行组装的厌氧真菌中,也报道了类似的结构。然而,真菌细胞体的组成、模块化组装机制和功能作用仍然未知。在这里,我们描述了一组对真菌细胞体组装至关重要的蛋白质,包括新几丁质单胞菌特有的保守支架蛋白。利用长读长、单分子技术对厌氧真菌 Anaeromyces robustus、Neocallimastix californiae 和 Piromyces finnis 进行了高质量基因组组装。基因组分析结合蛋白质组学验证,揭示了每种真菌菌株平均含有 312 个含有 NCDD 的蛋白质,其中绝大多数是碳水化合物活性酶 (CAZymes),在四个属中鉴定出 95 个大型真菌支架蛋白,它们与 NCDD 结合。真菌 dockerin 和支架蛋白结构域与它们的细菌对应物没有相似性,但几个催化结构域是通过与肠道细菌的水平基因转移而起源的。然而,GH3、GH6 和 GH45 酶的加入扩展了厌氧真菌细胞体的生物催化活性。这些发现表明,真菌细胞体是一种进化上的嵌合体结构——一种独立进化的真菌复合物,它从肠道微生物组中的细菌邻体中借用了有用的活性。