Suppr超能文献

受真菌纤维小体启发设计嵌合酶。

Designing chimeric enzymes inspired by fungal cellulosomes.

作者信息

Gilmore Sean P, Lillington Stephen P, Haitjema Charles H, de Groot Randall, O'Malley Michelle A

机构信息

Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States.

出版信息

Synth Syst Biotechnol. 2020 Feb 8;5(1):23-32. doi: 10.1016/j.synbio.2020.01.003. eCollection 2020 Mar.

Abstract

Cellulosomes are synthesized by anaerobic bacteria and fungi to degrade lignocellulose via synergistic action of multiple enzymes fused to a protein scaffold. Through templating key protein domains (cohesin and dockerin), designer cellulosomes have been engineered from bacterial motifs to alter the activity, stability, and degradation efficiency of enzyme complexes. Recently a parts list for fungal cellulosomes from the anaerobic fungi () was determined, which revealed sequence divergent fungal cohesin, dockerin, and scaffoldin domains that could be used to expand the available toolbox to synthesize designer cellulosomes. In this work, multi-domain carbohydrate active enzymes (CAZymes) from 3 cellulosome-producing fungi were analyzed to inform the design of chimeric proteins for synthetic cellulosomes inspired by anaerobic fungi. In particular, was used as a structural template for chimeric carbohydrate active enzymes. Recombinant enzymes with retained properties were engineered by combining thermophilic glycosyl hydrolase domains from with dockerin domains from . By preserving the protein domain order from , chimeric enzymes retained catalytic activity at temperatures over 80 °C and were able to associate with cellulosomes purified from anaerobic fungi. Fungal cellulosomes harbor a wide diversity of glycoside hydrolases, each representing templates for the design of chimeric enzymes. By conserving dockerin domain position within the primary structure of each protein, the activity of both the catalytic domain and dockerin domain was retained in enzyme chimeras. Taken further, the domain positioning inferred from native fungal cellulosome proteins can be used to engineer multi-domain proteins with non-native favorable properties, such as thermostability.

摘要

纤维小体由厌氧细菌和真菌合成,通过与蛋白质支架融合的多种酶的协同作用来降解木质纤维素。通过对关键蛋白质结构域(粘着蛋白和锚定蛋白)进行模板化,已从细菌基序设计出定制纤维小体,以改变酶复合物的活性、稳定性和降解效率。最近确定了厌氧真菌()的真菌纤维小体的成分清单,该清单揭示了序列不同的真菌粘着蛋白、锚定蛋白和支架蛋白结构域,可用于扩展合成定制纤维小体的可用工具箱。在这项工作中,分析了来自3种产生纤维小体的真菌的多结构域碳水化合物活性酶(CAZymes),为受厌氧真菌启发的合成纤维小体的嵌合蛋白设计提供信息。特别是,被用作嵌合碳水化合物活性酶的结构模板。通过将来自的嗜热糖基水解酶结构域与来自的锚定蛋白结构域结合,设计出具有保留特性的重组酶。通过保留来自的蛋白质结构域顺序,嵌合酶在80℃以上的温度下仍保留催化活性,并能够与从厌氧真菌中纯化的纤维小体结合。真菌纤维小体含有多种糖苷水解酶,每种都代表嵌合酶设计的模板。通过在每种蛋白质一级结构中保留锚定蛋白结构域的位置,催化结构域和锚定蛋白结构域的活性在酶嵌合体中均得以保留。进一步而言,从天然真菌纤维小体蛋白推断出的结构域定位可用于设计具有非天然有利特性(如热稳定性)的多结构域蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a777/7015840/b46b4966bc9d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验