Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States.
Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Moscow, 143026, Russia.
Anal Chem. 2017 Jun 20;89(12):6285-6289. doi: 10.1021/acs.analchem.7b00876. Epub 2017 Jun 7.
Pyocyanin is a virulence factor produced as a secondary metabolite by the opportunistic human pathogen, Pseudomonas aeruginosa. Fast and direct detection of pyocyanin is of importance as it could provide important insights regarding P. aeruginosa's virulence mechanisms. Here, we present an electrochemical sensing platform of redox-active pyocyanin using transparent carbon ultramicroelectrode arrays (T-CUAs), which were made using a previously reported simple fabrication process ( Duay et al. Anal. Chem. 2015 , 87 , 10109 ). Square-wave voltammetry was used to quantify pyocyanin concentrations on T-CUAs with and without chitosan gold nanoparticles (CS/GNP) and planar transparent macroelectrodes (T-Macro). The response time (RT), limit of detection (LOD), and linear dynamic range (LDR) differ for each electrode type due to subtle influences in how the detectable signal varies in relation to the charging time and resistive and capacitive noise. In general lower LODs can be achieved at the consequence of smaller LDRs. The LOD for T-Macro was 0.75 ± 0.09 μM with a LDR of 0.75-25 μM, and the LOD for the CS/GNP 1.54 T-CUA was determined to be 1.6 ± 0.2 μM with a LDR of 1-100 μM, respectively. The LOD for the 1.54T-CUA with a larger LDR of 1-250 μM was 1.0 ± 0.3 μM. These LODs and LDRs fall within the range of PYO concentrations for a variety of in vitro and in vivo cellular environments and offer promise of the application of T-CUAs for the quantitative study of biotoxins, quorum sensing, and pathogenesis. Finally, we demonstrate the successful use of T-CUAs for the electrochemical detection of pyocyanin secreted from P. aeruginosa strains while optically imaging the cells. The secreted pyocyanin levels from two bacterial strains, PA11 and PA14, were measured to have concentrations of 45 ± 5 and 3 ± 2 μM, respectively.
绿脓菌素是一种机会性病原体铜绿假单胞菌产生的次级代谢产物,是一种毒力因子。快速、直接检测绿脓菌素具有重要意义,因为它可以为铜绿假单胞菌的毒力机制提供重要的见解。在这里,我们提出了一种使用透明碳超微电极阵列(T-CUAs)的氧化还原活性绿脓菌素电化学传感平台,该平台使用先前报道的简单制造工艺(Duay 等人,分析化学。2015 年,87 卷,10109)制造。使用方波伏安法在具有和不具有壳聚糖金纳米粒子(CS/GNP)和平面透明大电极(T-Macro)的 T-CUAs 上定量检测绿脓菌素浓度。由于检测信号与充电时间和电阻和电容噪声的关系变化引起的微妙影响,每种电极类型的响应时间(RT)、检测限(LOD)和线性动态范围(LDR)都不同。通常,较小的 LDR 可以实现更低的 LOD。T-Macro 的 LOD 为 0.75±0.09μM,LDR 为 0.75-25μM,CS/GNP 1.54T-CUA 的 LOD 确定为 1.6±0.2μM,LDR 为 1-100μM。具有较大 LDR 为 1-250μM 的 1.54T-CUA 的 LOD 为 1.0±0.3μM。这些 LOD 和 LDR 落在各种体外和体内细胞环境中绿脓菌素浓度的范围内,为 T-CUAs 在生物毒素、群体感应和发病机制的定量研究中的应用提供了前景。最后,我们证明了 T-CUAs 成功用于电化学检测铜绿假单胞菌菌株分泌的绿脓菌素,同时光学成像细胞。两种细菌株 PA11 和 PA14 分泌的绿脓菌素水平分别测量为 45±5 和 3±2μM。