Department of Electronic Engineering (Biomedical Engineering), §School of Pharmacy,⊥Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, and ‡Department of Chemistry, Hong Kong Baptist University , Kowloon, Hong Kong, China.
ACS Nano. 2017 Jun 27;11(6):6085-6101. doi: 10.1021/acsnano.7b02044. Epub 2017 Jun 7.
Alkyl groups (CH) are prevalent in engineered bionanomaterials used for many intracellular applications, yet how alkyl groups dictate the interactions between nanoparticles and mammalian cells remains incomprehensively investigated. In this work, we report the effect of alkylation on the cellular uptake of densely polyethylene glycol-coated nanoparticles, which are characterized by their limited entry into mammalian cells. Specifically, we prepare densely PEGylated gold nanoparticles that bear alkyl chains of varying carbon chain lengths (n) and loading densities (termed "alkyl-PEG-AuNPs"), followed by investigating their uptake by Kera-308 keratinocytes. Strikingly, provided a modest alkyl mass percentage of 0.2% (2 orders of magnitude lower than that of conventional lipid-based NPs) in their PEG shells, dodecyl-PEG-AuNPs (n = 12) and octadecyl-PEG-AuNPs (n = 18) can enter Kera-308 cells 30-fold more than methoxy-PEG-AuNPs (no alkyl groups) and hexyl-PEG-AuNPs (n = 6) after 24 h of incubation. Such strong dependence on n is valid for all serum concentrations considered (even under serum-free conditions), although enhanced serum levels can trigger the agglomeration of alkyl-PEG-AuNPs (without permanent aggregation of the AuNP cores) and can attenuate their cellular uptake. Additionally, alkyl-PEG-AuNPs can rapidly enter Kera-308 cells via the filipodia-mediated pathway, engaging the tips of membrane protrusions and accumulating within interdigital folds. Most alkyl-PEG-AuNPs adopt the "endo-lysosomal" route of trafficking, but ∼15% of them accumulate in the cytosol. Regardless of intracellular location, alkyl-PEG-AuNPs predominantly appear as individual entities after 24 h of incubation. Our work offers insights into the incorporation of alkyl groups for designing bionanomaterials for cellular uptake and cytosolic accumulation with intracellular stability.
烷基(CH)在用于许多细胞内应用的工程生物纳米材料中很常见,但烷基如何决定纳米颗粒与哺乳动物细胞之间的相互作用仍未得到充分研究。在这项工作中,我们报告了烷基化对高度聚乙二醇包覆的纳米颗粒细胞摄取的影响,这些纳米颗粒的特点是它们进入哺乳动物细胞的能力有限。具体来说,我们制备了具有不同碳链长度(n)和负载密度(称为“烷基-PEG-AuNPs”)的烷基化聚乙二醇金纳米颗粒,然后研究它们被 Kera-308 角质细胞摄取的情况。引人注目的是,在其 PEG 壳中提供 0.2%(比传统脂质基 NPs 低 2 个数量级)的适度烷基质量百分比,十二烷基-PEG-AuNPs(n = 12)和十八烷基-PEG-AuNPs(n = 18)可以在 24 小时孵育后比甲氧基-PEG-AuNPs(无烷基)和己基-PEG-AuNPs(n = 6)进入 Kera-308 细胞 30 倍。这种对 n 的强烈依赖适用于所有考虑的血清浓度(即使在无血清条件下),尽管增强的血清水平可以触发烷基-PEG-AuNPs 的聚集(但不会永久聚集 AuNP 核),并可以减弱它们的细胞摄取。此外,烷基-PEG-AuNPs 可以通过丝状伪足介导的途径快速进入 Kera-308 细胞,与膜突起的尖端结合并在指间褶皱中积累。大多数烷基-PEG-AuNPs 采用“内体溶酶体”途径运输,但约 15%的烷基-PEG-AuNPs 积聚在细胞质中。无论在细胞内的位置如何,烷基-PEG-AuNPs 在孵育 24 小时后主要以单个实体的形式出现。我们的工作为设计用于细胞摄取和细胞质积累的生物纳米材料提供了深入了解,这些材料具有细胞内稳定性。