Suppr超能文献

微小RNA作为心力衰竭诊断生物标志物的系统评价与Meta分析

miRNAs as biomarkers for diagnosis of heart failure: A systematic review and meta-analysis.

作者信息

Yan Hualin, Ma Fan, Zhang Yi, Wang Chuan, Qiu Dajian, Zhou Kaiyu, Hua Yimin, Li Yifei

机构信息

Department of Pediatric Cardiology, West China Second University Hospital Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital West China Medical School Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, China Department of Cardiology, Boston Children's Hospital, Harvard University, Boston, USA.

出版信息

Medicine (Baltimore). 2017 Jun;96(22):e6825. doi: 10.1097/MD.0000000000006825.

Abstract

BACKGROUND

With the rapid development of molecular biology, the kind of mircoRNA (miRNA) has been introduced into emerging role both in cardiac development and pathological procedure. Thus, we conduct this meta-analysis to find out the role of circulating miRNA as a biomarker in detecting heart failure.

METHODS

We searched PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, and World Health Organization clinical trials registry center to identify relevant studies up to August 2016. We performed meta-analysis in a fixed/random-effect model using Meta-disc 1.4. We used STATA 14.0 to estimate the publication bias and meta-regression. Besides, we took use of SPSS 17.0 to evaluate variance between several groups. Information on true positive, false positive, false negative, and true negative, as well as the quality of research was extracted.

RESULTS

We use results from 10 articles to analyze the pooled accuracy. The overall performance of total mixed miRNAs (TmiRs) detection was: pooled sensitivity, 0.74 (95% confidence interval [CI], 0.72 to 0.75); pooled specificity, 0.69 (95%CI, 0.67 to 0.71); and area under the summary receiver operating characteristic curves value (SROC), 0.7991. The miRNA-423-5p (miR-423-5p) detection was: pooled sensitivity, 0.81 (95%CI, 0.76 to 0.85); pooled specificity, 0.67 (95%CI, 0.61 to 0.73); and SROC, 0.8600. However, taken the same patients population, we extracted the data of BNP for detecting heart failure and performed meta-analysis with acceptable SROC as 0.9291. Among the variance analysis, the diagnostic performance of miR-423-5p claimed significant advantages of other pooled results. However, the combination of miRNAs and BNP could increase the accuracy of detecting of heart failure. Unfortunately, there was no dramatic advantage of miR-423-5p compared to BNP protocol.

CONCLUSION

Despite interstudy variability, the performance test of miRNA for detecting heart failure revealed that miR-423-5p demonstrated the potential to be a biomarker. However, other miRNAs were not able to provide enough evidence on promising diagnostic value for heart failure based on the current data. Moreover, the combination of miRNAs and BNP could work as a better method to detection. Unfortunately, BNP was still the most convinced biomarker for such disease.

摘要

背景

随着分子生物学的快速发展,微小RNA(miRNA)在心脏发育和病理过程中发挥着新的作用。因此,我们进行这项荟萃分析以探究循环miRNA作为生物标志物在检测心力衰竭中的作用。

方法

我们检索了PubMed、EMBASE、Cochrane对照试验中央注册库和世界卫生组织临床试验注册中心,以识别截至2016年8月的相关研究。我们使用Meta-disc 1.4在固定/随机效应模型中进行荟萃分析。我们使用STATA 14.0来估计发表偏倚和进行Meta回归分析。此外,我们使用SPSS 17.0来评估几组之间的差异。提取了真阳性、假阳性、假阴性和真阴性的信息以及研究质量。

结果

我们使用10篇文章的结果来分析合并准确性。总混合miRNA(TmiRs)检测的总体表现为:合并敏感性为0.74(95%置信区间[CI],0.72至0.75);合并特异性为0.69(95%CI,0.67至0.71);汇总受试者工作特征曲线下面积值(SROC)为0.7991。miRNA - 423 - 5p(miR - 423 - 5p)检测的结果为:合并敏感性为0.81(95%CI,0.76至0.85);合并特异性为0.67(95%CI,0.61至0.73);SROC为0.8600。然而,对于相同的患者群体,我们提取了用于检测心力衰竭的BNP数据并进行荟萃分析,其可接受的SROC为0.9291。在方差分析中,miR - 423 - 5p的诊断性能相对于其他合并结果具有显著优势。然而,miRNA与BNP的联合使用可提高心力衰竭检测的准确性。遗憾的是,与BNP方案相比,miR - 423 - 5p没有显著优势。

结论

尽管研究间存在差异,但miRNA检测心力衰竭的性能测试表明,miR - 423 - 5p有潜力成为一种生物标志物。然而,基于当前数据,其他miRNA未能提供足够证据证明其对心力衰竭具有有前景的诊断价值。此外,miRNA与BNP的联合使用可能是一种更好的检测方法。遗憾的是,BNP仍然是这种疾病最可靠的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb50/5459698/b88b93ca9e4d/medi-96-e6825-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验