Suppr超能文献

利用生物信息学分析鉴定脓毒症的潜在生物标志物。

Identification of potential biomarkers of sepsis using bioinformatics analysis.

作者信息

Yang Yu-Xia, Li Li

机构信息

Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.

出版信息

Exp Ther Med. 2017 May;13(5):1689-1696. doi: 10.3892/etm.2017.4178. Epub 2017 Mar 2.

Abstract

Sepsis is defined as the systemic inflammatory response to infection and is one of the leading causes of mortality in critically ill patients. The goal of the present study is to elucidate the molecular mechanism of sepsis. Transcription profile data (GSE12624) were downloaded that had a total of 70 samples (36 sepsis samples and 34 non-sepsis samples) from the Gene Expression Omnibus database. Protein-protein interaction network analysis was conducted in order to comprehensively understand the interactions of genes in all samples. Hierarchical clustering and analysis of covariance (ANCOVA) global test were performed to identify the differentially expressed clusters in the networks, followed by function and pathway enrichment analyses. Finally, a support vector machine (SVM) was performed to classify the clusters, and 10-fold cross-validation method was performed to evaluate the classification results. A total of 7,672 genes were obtained after preprocessing of the mRNA expression profile data. The PPI network of genes under sepsis and non-sepsis status collected 1,996/2,147 genes and 2,645/2,783 interactions. Moreover, following the ANCOVA global test (P<0.05), 24 differentially expressed clusters with 12 clusters in septic and 12 clusters in non-septic samples were identified. Finally, 207 biomarker genes, including CDC42, CSF3R, GCA, HMGB2, RHOG, SERPINB1, TYROBP SERPINA1, FCER1 G and S100P in the top six clusters, were collected using the SVM method. The SERPINA1, FCER1 G and S100P genes are thought to be potential biomarkers. Furthermore, Gene oncology terms, including the intracellular signaling cascade, regulation of programmed cell death, regulation of cell death, regulation of apoptosis and leukocyte activation may participate in sepsis.

摘要

脓毒症被定义为对感染的全身性炎症反应,是危重症患者死亡的主要原因之一。本研究的目的是阐明脓毒症的分子机制。从基因表达综合数据库下载了转录谱数据(GSE12624),该数据共有70个样本(36个脓毒症样本和34个非脓毒症样本)。进行了蛋白质-蛋白质相互作用网络分析,以全面了解所有样本中基因的相互作用。进行层次聚类和协方差分析(ANCOVA)全局检验,以识别网络中差异表达的聚类,随后进行功能和通路富集分析。最后,使用支持向量机(SVM)对聚类进行分类,并采用10折交叉验证方法评估分类结果。对mRNA表达谱数据进行预处理后,共获得7672个基因。脓毒症和非脓毒症状态下基因的PPI网络收集了1996/2147个基因和2645/2783个相互作用。此外,在ANCOVA全局检验(P<0.05)之后,识别出24个差异表达的聚类,其中脓毒症样本中有12个聚类,非脓毒症样本中有12个聚类。最后,使用SVM方法收集了前六个聚类中的207个生物标志物基因,包括CDC42、CSF3R、GCA、HMGB2、RHOG、SERPINB1、TYROBP、SERPINA1、FCER1G和S100P。SERPINA1、FCER1G和S100P基因被认为是潜在的生物标志物。此外,基因本体学术语,包括细胞内信号级联、程序性细胞死亡调节、细胞死亡调节、凋亡调节和白细胞激活,可能参与脓毒症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/5443301/b432369127bd/etm-13-05-1689-g00.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验