Suppr超能文献

使用大规模健康相关生活质量数据集生成个性化预测,并告知患者手术可能带来的益处。

Use of large-scale HRQoL datasets to generate individualised predictions and inform patients about the likely benefit of surgery.

作者信息

Gutacker Nils, Street Andrew

机构信息

Centre for Health Economics, University of York, Heslington, YO10 5DD, UK.

出版信息

Qual Life Res. 2017 Sep;26(9):2497-2505. doi: 10.1007/s11136-017-1599-0. Epub 2017 May 31.

Abstract

PURPOSE

The English NHS has mandated the routine collection of health-related quality of life (HRQoL) data before and after surgery, giving prospective patient information about the likely benefit of surgery. Yet, the information is difficult to access and interpret because it is not presented in a lay-friendly format and does not reflect patients' individual circumstances. We set out a methodology to generate personalised information to help patients make informed decisions.

METHODS

We used anonymised, pre- and postoperative EuroQol-5D-3L (EQ-5D) data for over 490,000 English NHS patients who underwent primary hip or knee replacement surgery or groin hernia repair between April 2009 and March 2016. We estimated linear regression models to relate changes in EQ-5D utility scores to patients' own assessment of the success of surgery, and calculated from that minimally important differences for health improvements/deteriorations. Classification tree analysis was used to develop algorithms that sort patients into homogeneous groups that best predict postoperative EQ-5D utility scores.

RESULTS

Patients were classified into between 55 (hip replacement) to 60 (hernia repair) homogeneous groups. The classifications explained between 14 and 27% of variation in postoperative EQ-5D utility score.

CONCLUSIONS

Patients are heterogeneous in their expected benefit from surgery, and decision aids should reflect this. Large administrative datasets on HRQoL can be used to generate the required individualised predictions to inform patients.

摘要

目的

英国国民医疗服务体系(NHS)规定在手术前后常规收集与健康相关的生活质量(HRQoL)数据,为患者提供手术可能带来的益处的前瞻性信息。然而,这些信息难以获取和解读,因为其呈现形式并非通俗易懂,且未反映患者的个体情况。我们提出了一种方法来生成个性化信息,以帮助患者做出明智的决策。

方法

我们使用了2009年4月至2016年3月期间在英国NHS接受初次髋关节或膝关节置换手术或腹股沟疝修补术的49万多名患者的匿名术前和术后欧洲五维健康量表-3水平(EQ-5D)数据。我们估计了线性回归模型,以将EQ-5D效用评分的变化与患者对手术成功的自我评估联系起来,并据此计算出健康改善/恶化的最小重要差异。使用分类树分析来开发算法,将患者分为最能预测术后EQ-5D效用评分的同质组。

结果

患者被分为55组(髋关节置换)至60组(疝修补)的同质组。这些分类解释了术后EQ-5D效用评分中14%至27%的变异。

结论

患者从手术中获得的预期益处存在异质性,决策辅助工具应反映这一点。关于HRQoL的大型行政数据集可用于生成所需的个性化预测,为患者提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d0b/5548850/1f92eeeea158/11136_2017_1599_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验