Suppr超能文献

通过双电子-电子共振光谱法测定的HCN离子通道蛋白结构域的配体诱导构象转变的速率和平衡常数。

Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

作者信息

Collauto Alberto, DeBerg Hannah A, Kaufmann Royi, Zagotta William N, Stoll Stefan, Goldfarb Daniella

机构信息

Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.

出版信息

Phys Chem Chem Phys. 2017 Jun 14;19(23):15324-15334. doi: 10.1039/c7cp01925d.

Abstract

Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

摘要

配体结合可诱导蛋白质发生显著的构象变化。这一过程的机制将与配体结合事件相关的平衡和构象变化联系起来。在这里,我们表明,通过将W波段双电子-电子共振(DEER)光谱与微流控快速冷冻淬灭(μRFQ)相结合,可以解析这些过程,并获得平衡常数和反应速率。我们研究了HCN2离子通道的硝基氧标记的、分离的羧基末端环核苷酸结合结构域(CNBD)在配体3',5'-环磷酸腺苷(cAMP)结合时的构象转变。使用基于模型的全局分析,μRFQ DEER实验的时间分辨数据直接提供了开放和封闭构象的分数群体随时间的变化情况。我们使用四态模型对蛋白质中配体诱导的构象变化进行建模:无配体/开放(AO)、无配体/封闭(AC)、结合/开放(BO)、结合/封闭(BC)。这些状态根据AC + L ⇌ AO + L ⇌ BO ⇌ BC相互转化。通过分析平衡时封闭和开放构象相对贡献的浓度依赖性,我们估计了两个构象平衡的平衡常数以及开放态配体解离常数。对时间分辨的μRFQ DEER数据的分析给出了配体结合和解离的内在速率以及构象变化速率的估计值。这表明DEER可以定量解析配体结合的热力学和动力学以及相关的构象变化。

相似文献

3
Double electron-electron resonance reveals cAMP-induced conformational change in HCN channels.
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9816-21. doi: 10.1073/pnas.1405371111. Epub 2014 Jun 23.
5
Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2.
Biomol NMR Assign. 2015 Oct;9(2):243-6. doi: 10.1007/s12104-014-9583-x. Epub 2014 Oct 17.
6
Conformational Flip of Nonactivated HCN2 Channel Subunits Evoked by Cyclic Nucleotides.
Biophys J. 2015 Dec 1;109(11):2268-76. doi: 10.1016/j.bpj.2015.08.054.
7
HCN Channel C-Terminal Region Speeds Activation Rates Independently of Autoinhibition.
J Membr Biol. 2015 Dec;248(6):1043-60. doi: 10.1007/s00232-015-9816-7. Epub 2015 Jun 30.
9
cAMP binds to closed, inactivated, and open sea urchin HCN channels in a state-dependent manner.
J Gen Physiol. 2019 Feb 4;151(2):200-213. doi: 10.1085/jgp.201812019. Epub 2018 Dec 12.
10
Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14577-82. doi: 10.1073/pnas.1410389111. Epub 2014 Sep 2.

引用本文的文献

3
A high affinity switch for cAMP in the HCN pacemaker channels.
Nat Commun. 2024 Jan 29;15(1):843. doi: 10.1038/s41467-024-45136-y.
4
Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET.
Nat Commun. 2022 Jul 29;13(1):4396. doi: 10.1038/s41467-022-31945-6.
5
Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy.
Angew Chem Int Ed Engl. 2022 Jan 10;61(2):e202113448. doi: 10.1002/anie.202113448. Epub 2021 Dec 2.
6
DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data.
Magn Reson (Gott). 2020;1(2):209-224. doi: 10.5194/mr-1-209-2020. Epub 2020 Oct 1.
7
Protein functional dynamics from the rigorous global analysis of DEER data: Conditions, components, and conformations.
J Gen Physiol. 2021 Nov 1;153(11). doi: 10.1085/jgp.201711954. Epub 2021 Sep 16.
8
Unraveling a Ligand-Induced Twist of a Homodimeric Enzyme by Pulsed Electron-Electron Double Resonance.
Angew Chem Int Ed Engl. 2021 Oct 18;60(43):23419-23426. doi: 10.1002/anie.202108179. Epub 2021 Sep 21.
9
cAMP binding to closed pacemaker ion channels is non-cooperative.
Nature. 2021 Jul;595(7868):606-610. doi: 10.1038/s41586-021-03686-x. Epub 2021 Jun 30.
10
Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER distance restraints.
PLoS Comput Biol. 2021 Jun 16;17(6):e1009107. doi: 10.1371/journal.pcbi.1009107. eCollection 2021 Jun.

本文引用的文献

1
PELDOR Spectroscopy Reveals Two Defined States of a Sialic Acid TRAP Transporter SBP in Solution.
Biophys J. 2017 Jan 10;112(1):109-120. doi: 10.1016/j.bpj.2016.12.010.
2
Long Distance Measurements up to 160 Å in the GroEL Tetradecamer Using Q-Band DEER EPR Spectroscopy.
Angew Chem Int Ed Engl. 2016 Dec 19;55(51):15905-15909. doi: 10.1002/anie.201609617. Epub 2016 Nov 17.
4
Rapid Freeze-Quench EPR Spectroscopy: Improved Collection of Frozen Particles.
Appl Magn Reson. 2016;47:643-653. doi: 10.1007/s00723-016-0783-7. Epub 2016 Apr 30.
6
Early folding events during light harvesting complex II assembly in vitro monitored by pulsed electron paramagnetic resonance.
Biochim Biophys Acta. 2016 Jun;1857(6):695-704. doi: 10.1016/j.bbabio.2016.04.004. Epub 2016 Apr 7.
7
Protonation-dependent conformational dynamics of the multidrug transporter EmrE.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1220-5. doi: 10.1073/pnas.1520431113. Epub 2016 Jan 19.
8
Investigating the position of the hairpin loop in New Delhi metallo-β-lactamase, NDM-1, during catalysis and inhibitor binding.
J Inorg Biochem. 2016 Mar;156:35-9. doi: 10.1016/j.jinorgbio.2015.10.011. Epub 2015 Oct 22.
9
Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides.
J Biol Chem. 2016 Jan 1;291(1):371-81. doi: 10.1074/jbc.M115.696450. Epub 2015 Nov 11.
10
A Straightforward Approach to the Analysis of Double Electron-Electron Resonance Data.
Methods Enzymol. 2015;563:531-67. doi: 10.1016/bs.mie.2015.07.031. Epub 2015 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验