Stein Richard A, Beth Albert H, Hustedt Eric J
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
Methods Enzymol. 2015;563:531-67. doi: 10.1016/bs.mie.2015.07.031. Epub 2015 Sep 15.
Double electron-electron resonance (DEER) is now widely utilized to measure distance distributions in the 20-70Å range. DEER is frequently applied to biological systems that have multiple conformational states leading to complex distance distributions. These complex distributions raise issues regarding the best approach to analyze DEER data. A widely used method utilizes a priori background correction followed by Tikhonov regularization. Unfortunately, the underlying assumptions of this approach can impact the analysis. In this chapter, a method of analyzing DEER data is presented that is ideally suited to obtain these complex distance distributions. The approach allows the fitting of raw experimental data without a priori background correction as well as the rigorous determination of uncertainties for all fitting parameters. This same methodological approach can be used for the simultaneous or global analysis of multiple DEER data sets using variable ratios of a common set of components, thus allowing direct correlation of distance components with functionally relevant conformational and biochemical states. Examples are given throughout to highlight this robust fitting approach.
双电子-电子共振(DEER)现已广泛用于测量20-70埃范围内的距离分布。DEER经常应用于具有多种构象状态从而导致复杂距离分布的生物系统。这些复杂的分布引发了关于分析DEER数据的最佳方法的问题。一种广泛使用的方法是先进行先验背景校正,然后进行蒂霍诺夫正则化。不幸的是,这种方法的基本假设可能会影响分析。在本章中,提出了一种分析DEER数据的方法,该方法非常适合于获得这些复杂的距离分布。该方法允许在不进行先验背景校正的情况下拟合原始实验数据,并对所有拟合参数进行严格的不确定性测定。同样的方法可以用于使用一组共同组分的可变比例对多个DEER数据集进行同时或全局分析,从而使距离组分与功能相关的构象和生化状态直接相关。文中给出了多个例子以突出这种稳健的拟合方法。