Suppr超能文献

一种分析双电子-电子共振数据的简单方法。

A Straightforward Approach to the Analysis of Double Electron-Electron Resonance Data.

作者信息

Stein Richard A, Beth Albert H, Hustedt Eric J

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Methods Enzymol. 2015;563:531-67. doi: 10.1016/bs.mie.2015.07.031. Epub 2015 Sep 15.

Abstract

Double electron-electron resonance (DEER) is now widely utilized to measure distance distributions in the 20-70Å range. DEER is frequently applied to biological systems that have multiple conformational states leading to complex distance distributions. These complex distributions raise issues regarding the best approach to analyze DEER data. A widely used method utilizes a priori background correction followed by Tikhonov regularization. Unfortunately, the underlying assumptions of this approach can impact the analysis. In this chapter, a method of analyzing DEER data is presented that is ideally suited to obtain these complex distance distributions. The approach allows the fitting of raw experimental data without a priori background correction as well as the rigorous determination of uncertainties for all fitting parameters. This same methodological approach can be used for the simultaneous or global analysis of multiple DEER data sets using variable ratios of a common set of components, thus allowing direct correlation of distance components with functionally relevant conformational and biochemical states. Examples are given throughout to highlight this robust fitting approach.

摘要

双电子-电子共振(DEER)现已广泛用于测量20-70埃范围内的距离分布。DEER经常应用于具有多种构象状态从而导致复杂距离分布的生物系统。这些复杂的分布引发了关于分析DEER数据的最佳方法的问题。一种广泛使用的方法是先进行先验背景校正,然后进行蒂霍诺夫正则化。不幸的是,这种方法的基本假设可能会影响分析。在本章中,提出了一种分析DEER数据的方法,该方法非常适合于获得这些复杂的距离分布。该方法允许在不进行先验背景校正的情况下拟合原始实验数据,并对所有拟合参数进行严格的不确定性测定。同样的方法可以用于使用一组共同组分的可变比例对多个DEER数据集进行同时或全局分析,从而使距离组分与功能相关的构象和生化状态直接相关。文中给出了多个例子以突出这种稳健的拟合方法。

相似文献

1
A Straightforward Approach to the Analysis of Double Electron-Electron Resonance Data.
Methods Enzymol. 2015;563:531-67. doi: 10.1016/bs.mie.2015.07.031. Epub 2015 Sep 15.
2
Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease.
Methods Enzymol. 2015;564:153-87. doi: 10.1016/bs.mie.2015.07.019. Epub 2015 Sep 1.
3
Application of spherical harmonics for DEER data analysis in systems with a conformational distribution.
J Magn Reson. 2020 Jul;316:106769. doi: 10.1016/j.jmr.2020.106769. Epub 2020 Jun 10.
4
The global analysis of DEER data.
J Magn Reson. 2012 May;218:93-104. doi: 10.1016/j.jmr.2012.03.006. Epub 2012 Mar 24.
5
Compactness regularization in the analysis of dipolar EPR spectroscopy data.
J Magn Reson. 2022 Jun;339:107218. doi: 10.1016/j.jmr.2022.107218. Epub 2022 Apr 9.
6
Protein functional dynamics from the rigorous global analysis of DEER data: Conditions, components, and conformations.
J Gen Physiol. 2021 Nov 1;153(11). doi: 10.1085/jgp.201711954. Epub 2021 Sep 16.
7
Three-spin correlations in double electron-electron resonance.
Phys Chem Chem Phys. 2009 Aug 21;11(31):6580-91. doi: 10.1039/b905724b. Epub 2009 May 20.
9
Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron-electron resonance.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1201-10. doi: 10.1073/pnas.1403179111. Epub 2014 Mar 18.

引用本文的文献

1
Structure and Nitrite Reductase Activity of the Di-iron Protein ScdA in .
J Am Chem Soc. 2025 Sep 3;147(35):31558-31569. doi: 10.1021/jacs.5c05573. Epub 2025 Aug 22.
2
Rapid Analysis of DEER Signals Including Short Distances.
J Phys Chem Lett. 2025 Jan 9;16(1):38-44. doi: 10.1021/acs.jpclett.4c03245. Epub 2024 Dec 18.
3
In-Cell DEER Spectroscopy of Nanodisc-Delivered Membrane Proteins in Living Cell Membranes.
JACS Au. 2024 Sep 24;4(10):3766-3770. doi: 10.1021/jacsau.4c00702. eCollection 2024 Oct 28.
5
Bayesian Probabilistic Inference of Nonparametric Distance Distributions in DEER Spectroscopy.
J Phys Chem A. 2024 Oct 17;128(41):9071-9081. doi: 10.1021/acs.jpca.4c05056. Epub 2024 Oct 4.
6
Alternating access of a bacterial homolog of neurotransmitter: sodium symporters determined from AlphaFold2 ensembles and DEER spectroscopy.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2406063121. doi: 10.1073/pnas.2406063121. Epub 2024 Sep 20.
10
Exploring the conformational landscapes of protein kinases: perspectives from FRET and DEER.
Biochem Soc Trans. 2024 Jun 26;52(3):1071-1083. doi: 10.1042/BST20230558.

本文引用的文献

1
Assembly states of FliM and FliG within the flagellar switch complex.
J Mol Biol. 2015 Feb 27;427(4):867-886. doi: 10.1016/j.jmb.2014.12.009. Epub 2014 Dec 20.
2
Determining the oligomeric structure of proteorhodopsin by Gd3+ -based pulsed dipolar spectroscopy of multiple distances.
Structure. 2014 Nov 4;22(11):1677-86. doi: 10.1016/j.str.2014.09.008. Epub 2014 Oct 30.
3
PELDOR in rotationally symmetric homo-oligomers.
Mol Phys. 2013 Oct;111(18-19):2845-2854. doi: 10.1080/00268976.2013.798697. Epub 2013 May 30.
5
Protonation drives the conformational switch in the multidrug transporter LmrP.
Nat Chem Biol. 2014 Feb;10(2):149-55. doi: 10.1038/nchembio.1408. Epub 2013 Dec 8.
6
Modeling excluded volume effects for the faithful description of the background signal in double electron-electron resonance.
J Phys Chem B. 2013 Dec 27;117(51):16542-57. doi: 10.1021/jp408338q. Epub 2013 Dec 11.
7
Suppression of ghost distances in multiple-spin double electron-electron resonance.
Phys Chem Chem Phys. 2013 Apr 28;15(16):5854-66. doi: 10.1039/c3cp44462g. Epub 2013 Mar 13.
8
Conformational ensemble of the sodium-coupled aspartate transporter.
Nat Struct Mol Biol. 2013 Feb;20(2):215-21. doi: 10.1038/nsmb.2494. Epub 2013 Jan 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验