Suppr超能文献

利用反射光谱法估算中国山东省典型污水灌溉区土壤中的重金属含量

Concentration estimation of heavy metal in soils from typical sewage irrigation area of Shandong Province, China using reflectance spectroscopy.

作者信息

Wang Fei, Li Chunfang, Wang Jining, Cao Wentao, Wu Quanyuan

机构信息

College of Geography and Environment, Shandong Normal University, 88 east of Wenhua Road, Jinan, 250014, Shandong province, People's Republic of China.

General Station of Geological Environment Monitoring of Shandong province, 17 Jingshan Road, Jinan, 250014, Shandong Province, People's Republic of China.

出版信息

Environ Sci Pollut Res Int. 2017 Jul;24(20):16883-16892. doi: 10.1007/s11356-017-9224-x. Epub 2017 Jun 1.

Abstract

Since sewage irrigation can markedly disturb the status of heavy metals in soils, a convenient and accurate technique for heavy metal concentration estimation is of utmost importance in the cropland using wastewater for irrigation. This study therefore assessed the feasibility of visible and near infrared reflectance (VINR) spectroscopy for predicting heavy metal contents including Cr, Cu, Ni, Pb, Zn, As, Cd, and Hg in the north plain of Longkou city, Shandong Province, China. A total of 70 topsoil samples were taken for in situ spectra measurement and chemical analysis. Stepwise multiple linear regression (SMLR) and principal component regression (PCR) algorithms were applied to establish the associations between heavy metals and reflectance spectral data pretreated by different transformation methods. Based on the criteria that minimal root mean square error (RMSE), maximal coefficient of determination (R ) for calibration, and greater ratio of standard error of performance to standard deviation (RPD) is related to the optimal model, SMLR model using first deviation data (RD) provided the best prediction for the contents of Ni, Pb, As, Cd, and Hg, calibration using SNV data for Cr and continuum removal spectra for Zn, while PCR equation employed RD values was fit for prediction of the contents of Cu. The determination coefficients of all the reasonable models were beyond 0.6, and RPD indicated a fair or good result. In general, first deviation preprocessing tool outperformed other methods in this study, while raw spectra reflectance performed unsatisfactory in all models. Overall, VINR reflectance spectroscopy technique could be applicable to the rapid concentration assessment of heavy metals in soils of the study area.

摘要

由于污水灌溉会显著扰乱土壤中重金属的状态,因此,对于利用废水灌溉的农田来说,一种便捷且准确的重金属浓度估算技术至关重要。因此,本研究评估了可见与近红外反射光谱(VINR)技术用于预测中国山东省龙口市北平原地区土壤中铬(Cr)、铜(Cu)、镍(Ni)、铅(Pb)、锌(Zn)、砷(As)、镉(Cd)和汞(Hg)等重金属含量的可行性。共采集了70份表层土壤样本用于原位光谱测量和化学分析。采用逐步多元线性回归(SMLR)和主成分回归(PCR)算法,建立不同变换方法预处理后的重金属与反射光谱数据之间的关联。基于最小均方根误差(RMSE)、校准的最大决定系数(R )以及性能标准误差与标准差之比(RPD)更大与最优模型相关的标准,使用一阶导数数据(RD)的SMLR模型对镍、铅、砷、镉和汞的含量提供了最佳预测,铬的校准使用标准正态变量变换(SNV)数据,锌的校准使用连续统去除光谱,而采用RD值的PCR方程适用于铜含量的预测。所有合理模型的决定系数均超过0.6,RPD表明结果良好。总体而言,在本研究中一阶导数预处理工具比其他方法表现更优,而原始光谱反射率在所有模型中表现不佳。总体而言,VINR反射光谱技术可应用于研究区域土壤中重金属的快速浓度评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验