College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QE, UK.
Faraday Discuss. 2017 Aug 24;200:121-142. doi: 10.1039/c7fd00033b.
A coupled global aerosol-carbon-climate model is applied to assess the impacts of aerosol physical climate change on the land ecosystem services gross primary productivity (GPP) and net primary productivity (NPP) in the 1996-2005 period. Aerosol impacts are quantified on an annual mean basis relative to the hypothetical aerosol-free world in 1996-2005, the global climate state in the absence of the historical rise in aerosol pollution. We examine the separate and combined roles of fast feedbacks associated with the land and slow feedbacks associated with the ocean. We consider all fossil fuel, biofuel and biomass burning aerosol emission sources as anthropogenic. The effective radiative forcing for aerosol-radiation interactions is -0.44 W m and aerosol-cloud interactions is -1.64 W m. Aerosols cool and dry the global climate system by -0.8 °C and -0.08 mm per day relative to the aerosol-free world. Without aerosol pollution, human-induced global warming since the preindustrial would have already exceeded the 1.5 °C aspirational limit set in the Paris Agreement by the 1996-2005 decade. Aerosol climate impacts on the global average land ecosystem services are small due to large opposite sign effects in the tropical and boreal biomes. Aerosol slow feedbacks associated with the ocean strongly dominate impacts in the Amazon and North American Boreal. Aerosol cooling of the Amazon by -1.2 °C drives NPP increases of 8% or +0.76 ± 0.61 PgC per year, a 5-10 times larger impact than estimates of diffuse radiation fertilization by biomass burning aerosol in this region. The North American Boreal suffers GPP and NPP decreases of 35% due to aerosol-induced cooling and drying (-1.6 °C, -0.14 mm per day). Aerosol-land feedbacks play a larger role in the eastern US and Central Africa. Our study identifies an eco-climate teleconnection in the polluted earth system: the rise of the northern hemisphere mid-latitude reflective aerosol pollution layer causes long range cooling that protects Amazon NPP by 8% and suppresses boreal NPP by 35%.
应用一个耦合的全球气溶胶-碳-气候模型来评估气溶胶物理气候变化对 1996-2005 年陆地生态系统服务总初级生产力(GPP)和净初级生产力(NPP)的影响。相对于 1996-2005 年假设的无气溶胶世界,以及历史上气溶胶污染增加之外的全球气候状态,每年平均量化气溶胶的影响。我们分别考察了与陆地相关的快速反馈和与海洋相关的缓慢反馈的单独和综合作用。我们将所有化石燃料、生物燃料和生物质燃烧气溶胶排放源视为人为源。气溶胶-辐射相互作用的有效辐射强迫为-0.44 W m-2,气溶胶-云相互作用的有效辐射强迫为-1.64 W m-2。与无气溶胶世界相比,气溶胶使全球气候系统冷却和干燥了-0.8°C和-0.08 mm/天。如果没有气溶胶污染,自工业化时代以来人为引起的全球变暖在 1996-2005 十年间就已经超过了《巴黎协定》中设定的 1.5°C的期望限值。由于热带和北方生物群落的相反符号效应较大,气溶胶对全球平均陆地生态系统服务的气候影响较小。与海洋相关的气溶胶缓慢反馈在亚马逊和北美北方森林中强烈主导着影响。亚马逊地区的气溶胶冷却-1.2°C导致 NPP 增加 8%或每年增加 0.76±0.61 PgC,这是该地区生物质燃烧气溶胶漫射辐射施肥影响的 5-10 倍。由于气溶胶引起的冷却和干燥(-1.6°C,-0.14 mm/天),北美北方森林的 GPP 和 NPP 减少了 35%。气溶胶-陆地反馈在美东和中非发挥了更大的作用。我们的研究确定了污染地球系统中的生态-气候遥相关关系:北半球中纬度反射性气溶胶污染层的上升导致长距离冷却,使亚马逊 NPP 增加 8%,抑制北方森林 NPP 增加 35%。