Institute for Theoretical Biology, Charité Universitätsmedizin and Humboldt Universität, Berlin D-10115, Germany.
Wissenschaftskolleg zu Berlin, Berlin D-14193, Germany.
Bioinformatics. 2017 Oct 1;33(19):3072-3079. doi: 10.1093/bioinformatics/btx351.
Neural activities of the brain occur through the formation of spatio-temporal patterns. In recent years, macroscopic neural imaging techniques have produced a large body of data on these patterned activities, yet a numerical measure of spatio-temporal coherence has often been reduced to the global order parameter, which does not uncover the degree of spatial correlation. Here, we propose to use the spatial autocorrelation measure Moran's I, which can be applied to capture dynamic signatures of spatial organization. We demonstrate the application of this technique to collective cellular circadian clock activities measured in the small network of the suprachiasmatic nucleus (SCN) in the hypothalamus.
We found that Moran's I is a practical quantitative measure of the degree of spatial coherence in neural imaging data. Initially developed with a geographical context in mind, Moran's I accounts for the spatial organization of any interacting units. Moran's I can be modified in accordance with the characteristic length scale of a neural activity pattern. It allows a quantification of statistical significance levels for the observed patterns. We describe the technique applied to synthetic datasets and various experimental imaging time-series from cultured SCN explants. It is demonstrated that major characteristics of the collective state can be described by Moran's I and the traditional Kuramoto order parameter R in a complementary fashion.
Python 2.7 code of illustrative examples can be found in the Supplementary Material.
christoph.schmal@charite.de or grigory.bordyugov@hu-berlin.de.
Supplementary data are available at Bioinformatics online.
大脑的神经活动是通过时空模式的形成来实现的。近年来,宏观神经成像技术产生了大量关于这些模式活动的数据,但时空相干性的数值度量通常被简化为全局阶参数,该参数不能揭示空间相关的程度。在这里,我们建议使用空间自相关度量 Moran's I,它可以用于捕获空间组织的动态特征。我们展示了该技术在测量下丘脑视交叉上核(SCN)小网络中集体细胞生物钟活动中的应用。
我们发现 Moran's I 是神经成像数据中空间相干程度的实用定量度量。最初是在地理背景下开发的,Moran's I 考虑了任何相互作用单元的空间组织。Moran's I 可以根据神经活动模式的特征长度尺度进行修改。它允许对观察到的模式进行统计显著性水平的量化。我们描述了该技术在合成数据集和各种来自培养的 SCN 外植体的实验成像时间序列中的应用。结果表明,Moran's I 可以与传统的 Kuramoto 阶参数 R 互补地描述集体状态的主要特征。
说明性示例的 Python 2.7 代码可在补充材料中找到。
christoph.schmal@charite.de 或 grigory.bordyugov@hu-berlin.de。
补充数据可在生物信息学在线获得。