Suppr超能文献

α-FeOOH 修饰的石墨烯氧化物-碳纳米管气凝胶的制备及其对砷形态的吸附应用。

Fabrication of α-FeOOH decorated graphene oxide-carbon nanotubes aerogel and its application in adsorption of arsenic species.

机构信息

School of Ecological and Environmental Science, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.

Environmental Monitoring Station in Minhang District, Shanghai 200240, China.

出版信息

J Colloid Interface Sci. 2017 Nov 1;505:105-114. doi: 10.1016/j.jcis.2017.05.091. Epub 2017 May 26.

Abstract

Arsenic pollution has caused worldwide attention due to its mandatory toxicity. Chemical structures of the adsorbent and arsenic species greatly influence the arsenic adsorption efficiency. The goethite impregnated graphene oxide (GO)-carbon nanotubes (CNTs) aerogel (α-FeOOH@GCA) was prepared via a facile self-assembly method of GO-CNTs induced by in-situ Fe reduction. α-FeOOH@GCA showed excellent adsorption capacities of 56.43, 24.43 and 102.11mgg for As(V), DMA and p-ASA comparing with that of 25.71, 8.03 and 14.52mgg of pristine α-FeOOH, respectively. The incorporation of GO-CNTs not only hinders the aggregation of GO-CNTs but also inhibits the growth of α-FeOOH nanoparticles greatly facilitating the diffusion and adsorption capacity of arsenic species. α-FeOOH@GCA shows wide favorable application pH for arsenic species adsorption, high adsorption kinetics and excellent reusability. The phosphate and silicate anions compete with the arsenic species for active adsorption sites due to the similar anionic structure. Based on FTIR spectra, arsenic species were proven to form inner sphere complex on the surface of α-FeOOH@GCA through different ligand exchanging mechanism greatly dependent on the molecular structures of arsenic species. The results show that α-FeOOH@GCA could be used as promising adsorbent for arsenic purification in water system.

摘要

砷污染因其强制性毒性而引起了全世界的关注。吸附剂和砷形态的化学结构极大地影响了砷的吸附效率。通过 GO-CNTs 原位还原诱导的简便自组装方法制备了针铁矿浸渍氧化石墨烯(GO)-碳纳米管(CNTs)气凝胶(α-FeOOH@GCA)。与原始α-FeOOH 的 25.71、8.03 和 14.52mgg 相比,α-FeOOH@GCA 对 As(V)、DMA 和 p-ASA 的吸附容量分别为 56.43、24.43 和 102.11mgg。GO-CNTs 的掺入不仅阻碍了 GO-CNTs 的聚集,而且还极大地抑制了α-FeOOH 纳米粒子的生长,有利于砷形态的扩散和吸附。α-FeOOH@GCA 对砷形态的吸附具有广泛的适宜 pH 值、高吸附动力学和优异的可重复使用性。由于类似的阴离子结构,磷酸盐和硅酸盐阴离子会与砷形态竞争活性吸附位。基于傅里叶变换红外光谱(FTIR),证明砷形态通过不同的配体交换机制形成α-FeOOH@GCA 表面的内圈络合物,这极大地依赖于砷形态的分子结构。结果表明,α-FeOOH@GCA 可用作水体中砷净化的有前途的吸附剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验