Suppr超能文献

一套简单的指标揭示了脊椎动物类群中常见的运动综合征。

Suite of simple metrics reveals common movement syndromes across vertebrate taxa.

作者信息

Abrahms Briana, Seidel Dana P, Dougherty Eric, Hazen Elliott L, Bograd Steven J, Wilson Alan M, Weldon McNutt J, Costa Daniel P, Blake Stephen, Brashares Justin S, Getz Wayne M

机构信息

NOAA Southwest Fisheries Science Center, Environmental Research Division, 99 Pacific Street, Monterey, CA 93940 USA.

Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA.

出版信息

Mov Ecol. 2017 Jun 1;5:12. doi: 10.1186/s40462-017-0104-2. eCollection 2017.

Abstract

BACKGROUND

Because empirical studies of animal movement are most-often site- and species-specific, we lack understanding of the level of consistency in movement patterns across diverse taxa, as well as a framework for quantitatively classifying movement patterns. We aim to address this gap by determining the extent to which statistical signatures of animal movement patterns recur across ecological systems. We assessed a suite of movement metrics derived from GPS trajectories of thirteen marine and terrestrial vertebrate species spanning three taxonomic classes, orders of magnitude in body size, and modes of movement (swimming, flying, walking). Using these metrics, we performed a principal components analysis and cluster analysis to determine if individuals organized into statistically distinct clusters. Finally, to identify and interpret commonalities within clusters, we compared them to computer-simulated idealized representing suites of correlated movement traits observed across taxa (migration, nomadism, territoriality, and central place foraging).

RESULTS

Two principal components explained 70% of the variance among the movement metrics we evaluated across the thirteen species, and were used for the cluster analysis. The resulting analysis revealed four statistically distinct clusters. All simulated individuals of each idealized movement syndrome organized into separate clusters, suggesting that the four clusters are explained by common movement syndrome.

CONCLUSIONS

Our results offer early indication of widespread recurrent patterns in movement ecology that have consistent statistical signatures, regardless of taxon, body size, mode of movement, or environment. We further show that a simple set of metrics can be used to classify broad-scale movement patterns in disparate vertebrate taxa. Our comparative approach provides a general framework for quantifying and classifying animal movements, and facilitates new inquiries into relationships between movement syndromes and other ecological processes.

摘要

背景

由于对动物运动的实证研究大多是针对特定地点和物种的,我们缺乏对不同分类群运动模式一致性水平的理解,也缺乏对运动模式进行定量分类的框架。我们旨在通过确定动物运动模式的统计特征在不同生态系统中重复出现的程度来填补这一空白。我们评估了一系列从13种海洋和陆地脊椎动物的GPS轨迹中得出的运动指标,这些物种涵盖三个分类类别、相差几个数量级的体型以及运动方式(游泳、飞行、行走)。利用这些指标,我们进行了主成分分析和聚类分析,以确定个体是否能聚集成统计学上不同的簇。最后,为了识别和解释簇内的共性,我们将它们与计算机模拟的理想化运动模式进行比较,这些模式代表了在不同分类群中观察到的相关运动特征组合(迁徙、游牧、领地行为和中心地觅食)。

结果

两个主成分解释了我们评估的13个物种的运动指标中70%的方差,并用于聚类分析。结果分析揭示了四个统计学上不同的簇。每个理想化运动综合征的所有模拟个体都聚集成单独的簇,这表明这四个簇可以用共同的运动综合征来解释。

结论

我们的结果初步表明,运动生态学中存在广泛的重复模式,这些模式具有一致的统计特征,无论分类群、体型、运动方式或环境如何。我们还进一步表明,一组简单的指标可用于对不同脊椎动物分类群的大规模运动模式进行分类。我们的比较方法为量化和分类动物运动提供了一个通用框架,并有助于对运动综合征与其他生态过程之间的关系进行新的探究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验