文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于分阶段深度神经网络的多模态数据有效特征学习与融合在痴呆症诊断中的应用。

Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis.

机构信息

Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina.

Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.

出版信息

Hum Brain Mapp. 2019 Feb 15;40(3):1001-1016. doi: 10.1002/hbm.24428. Epub 2018 Nov 1.


DOI:10.1002/hbm.24428
PMID:30381863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6865441/
Abstract

In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three-stage deep feature learning and fusion framework, where deep neural network is trained stage-wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high-level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high-level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high-level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state-of-the-art methods.

摘要

在本文中,作者旨在最大程度地利用多模态神经影像学和遗传数据来识别阿尔茨海默病(AD)及其前驱状态轻度认知障碍(MCI)从正常衰老的受试者。多模态神经影像学数据(如 MRI 和 PET)提供了有关大脑异常的有价值的见解,而遗传数据(如单核苷酸多态性(SNP))提供了有关患者 AD 风险因素的信息。当将这些数据一起使用时,AD 的诊断准确性可能会提高。但是,这些数据具有异质性(例如,具有不同的数据分布),并且样本数量不同(例如,PET 样本数量远远少于 MRI 或 SNPs 的数量)。因此,使用这些数据学习有效的模型具有挑战性。为此,我们提出了一种新颖的三阶段深度特征学习和融合框架,其中神经网络分阶段进行训练。网络的每个阶段都通过使用可用的最大样本数进行有效的训练,学习不同模态组合的特征表示。具体来说,在第一阶段,我们独立地学习每个模态的潜在表示(即高级特征),以便部分解决模态之间的异质性,并可以在下一阶段将不同模态的高级特征组合在一起。在第二阶段,我们通过使用第一阶段学到的高级特征来学习每对模态组合的联合潜在特征。在第三阶段,我们通过融合第二阶段学到的联合潜在特征来学习诊断标签。为了在训练过程中进一步增加样本数量,我们还在数据集的每个训练对象中使用多个扫描时间点的数据。我们使用阿尔茨海默病神经影像学倡议(ADNI)数据集评估了所提出的框架用于 AD 诊断的效果,实验结果表明所提出的框架优于其他最先进的方法。

相似文献

[1]
Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis.

Hum Brain Mapp. 2018-11-1

[2]
Feature Learning and Fusion of Multimodality Neuroimaging and Genetic Data for Multi-status Dementia Diagnosis.

Mach Learn Med Imaging. 2017-9

[3]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[4]
Alzheimer's disease diagnosis framework from incomplete multimodal data using convolutional neural networks.

J Biomed Inform. 2021-9

[5]
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis.

Neuroimage. 2014-11-1

[6]
Label-aligned multi-task feature learning for multimodal classification of Alzheimer's disease and mild cognitive impairment.

Brain Imaging Behav. 2016-12

[7]
Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data.

IEEE Trans Med Imaging. 2019-4-25

[8]
Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease.

Med Image Anal. 2020-2

[9]
Multimodal Neuroimaging Feature Learning With Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer's Disease.

IEEE J Biomed Health Inform. 2017-1-19

[10]
Structured Sparse Kernel Learning for Imaging Genetics Based Alzheimer's Disease Diagnosis.

Med Image Comput Comput Assist Interv. 2016-10

引用本文的文献

[1]
A Cross-Modal Mutual Knowledge Distillation Framework for Alzheimer's Disease Diagnosis: Addressing Incomplete Modalities.

IEEE Trans Autom Sci Eng. 2025

[2]
Hydra-TS: Enhancing Human Activity Recognition with Multi-Objective Synthetic Time Series Data Generation.

IEEE Sens J. 2025-1

[3]
c-Triadem: A constrained, explainable deep learning model to identify novel biomarkers in Alzheimer's disease.

PLoS One. 2025-4-14

[4]
An imaging and genetic-based deep learning network for Alzheimer's disease diagnosis.

Front Aging Neurosci. 2025-3-21

[5]
A review of AI-based radiogenomics in neurodegenerative disease.

Front Big Data. 2025-2-20

[6]
CSEPC: a deep learning framework for classifying small-sample multimodal medical image data in Alzheimer's disease.

BMC Geriatr. 2025-2-26

[7]
Reducing inference cost of Alzheimer's disease identification using an uncertainty-aware ensemble of uni-modal and multi-modal learners.

Sci Rep. 2025-2-14

[8]
Caregiver perspectives enable accurate diagnosis of neurodegenerative disease.

Alzheimers Dement. 2025-1

[9]
Early Prediction of Progression to Alzheimer's Disease using Multi-Modality Neuroimages by a Novel Ordinal Learning Model ADPacer.

IISE Trans Healthc Syst Eng. 2024

[10]
BIGFormer: A Graph Transformer With Local Structure Awareness for Diagnosis and Pathogenesis Identification of Alzheimer's Disease Using Imaging Genetic Data.

IEEE J Biomed Health Inform. 2025-1

本文引用的文献

[1]
Strength and Similarity Guided Group-level Brain Functional Network Construction for MCI Diagnosis.

Pattern Recognit. 2019-4

[2]
Multi-Layer Multi-View Classification for Alzheimer's Disease Diagnosis.

Proc AAAI Conf Artif Intell. 2018-2

[3]
Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model.

IEEE Trans Biomed Eng. 2018-4-9

[4]
Conversion and time-to-conversion predictions of mild cognitive impairment using low-rank affinity pursuit denoising and matrix completion.

Med Image Anal. 2018-1-31

[5]
Feature Learning and Fusion of Multimodality Neuroimaging and Genetic Data for Multi-status Dementia Diagnosis.

Mach Learn Med Imaging. 2017-9

[6]
Multi-stage Diagnosis of Alzheimer's Disease with Incomplete Multimodal Data via Multi-task Deep Learning.

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017-9

[7]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

[8]
Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis.

Sci Rep. 2017-7-26

[9]
Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification.

Hum Brain Mapp. 2017-6-30

[10]
Structured Sparse Kernel Learning for Imaging Genetics Based Alzheimer's Disease Diagnosis.

Med Image Comput Comput Assist Interv. 2016-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索