Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
Soft Matter. 2017 Jun 28;13(25):4464-4481. doi: 10.1039/c7sm00852j.
We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S(q) with q being the magnitude of wave vector q. D[combining macron] and S(q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f and relaxation time τ as functions of the persistence time τ of self-propulsion, the single particle effective temperature T as well as the number density ρ. Consequently, we find the critical density ρ for given τ shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ. We find that T increases with τ and in the limit τ → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be easily extended to more complex systems such as active-passive mixtures.
我们提出了一种用于强相互作用的自主运动粒子系统的弛豫和玻璃动力学的模式耦合理论研究,其中自主推进力由 Ornstein-Uhlenbeck 色噪声描述,并且包括热噪声。我们的出发点是控制粒子位置分布函数的有效 Smoluchowski 方程,从中我们推导出非平衡稳态下密度涨落随时间的记忆函数方程。在没有宏观电流的基本假设和标准模式耦合近似下,我们可以得到不可约记忆函数和其他相关动态项的表达式,其中主动系统的非平衡特性通过平均扩散系数 D[组合]和非平凡的结构函数 S(q)表现出来,其中 q 是波矢 q 的大小。D[组合]和 S(q)进入记忆函数的频率项和顶点项,从而影响系统的短时间和长时间动力学。通过这些方程,我们通过研究德拜 - 沃勒因子 f 和弛豫时间 τ 作为自推进的持续时间 τ、单个粒子有效温度 T 以及数密度 ρ 的函数,研究了这种热自主运动粒子系统的玻璃动力学。因此,我们发现对于给定的 τ,临界密度 ρ 随着推进力或有效温度的增加而向较大值移动,这与之前报道的模拟工作一致。此外,该理论使我们能够研究固定 ρ 下的临界有效温度 T 及其对 τ 的依赖性。我们发现 T 随 τ 增加,并且在 τ → 0 的极限下,它接近简单的被动布朗系统的预期值。我们的理论也很好地恢复了被动系统的结果,并且可以很容易地扩展到更复杂的系统,如主动-被动混合物。