Suppr超能文献

非平衡态模式耦合理论在自主运动粒子密集活性体系中的应用。

Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles.

机构信息

Department of Materials and Interfaces, The Weizmann Institute of Science, P.O. Box 26, 234 Herzl Street, Rehovot 7610001, Israel.

出版信息

Soft Matter. 2017 Oct 25;13(41):7609-7616. doi: 10.1039/c7sm01648d.

Abstract

The physics of active systems of self-propelled particles, in the regime of a dense liquid state, is an open puzzle of great current interest, both for statistical physics and because such systems appear in many biological contexts. We develop a nonequilibrium mode-coupling theory (MCT) for such systems, where activity is included as a colored noise with the particles having a self-propulsion force f and a persistence time τ. Using the extended MCT and a generalized fluctuation-dissipation theorem, we calculate the effective temperature T of the active fluid. The nonequilibrium nature of the systems is manifested through a time-dependent T that approaches a constant in the long-time limit, which depends on the activity parameters f and τ. We find, phenomenologically, that this long-time limit is captured by the potential energy of a single, trapped active particle (STAP). Through a scaling analysis close to the MCT glass transition point, we show that τ, the α-relaxation time, behaves as τ ∼ f, where γ = 1.74 is the MCT exponent for the passive system. τ may increase or decrease as a function of τ depending on the type of active force correlations, but the behavior is always governed by the same value of the exponent γ. Comparison with the numerical solution of the nonequilibrium MCT and simulation results give excellent agreement with scaling analysis.

摘要

自推进粒子的主动系统物理学在密集液态状态下是一个具有重大当前兴趣的开放性难题,既是统计物理学的一个问题,也是因为此类系统出现在许多生物背景中。我们为这种系统开发了一种非平衡模式耦合理论(MCT),其中活性被视为有色噪声,粒子具有自推进力 f 和持久时间 τ。使用扩展的 MCT 和广义涨落耗散定理,我们计算了活性流体的有效温度 T。系统的非平衡性质通过依赖于活性参数 f 和 τ 的随时间变化的 T 表现出来,T 在长时间限制下接近常数。我们从经验上发现,这个长时间限制被单个被捕获的主动粒子(STAP)的势能捕获。通过接近 MCT 玻璃化转变点的标度分析,我们表明 τ,即 α 弛豫时间,表现为 τ∼f,其中 γ = 1.74 是被动系统的 MCT 指数。τ 可能随 τ 增加或减少,这取决于活性力相关性的类型,但行为始终由相同的指数 γ 控制。与非平衡 MCT 的数值解和模拟结果的比较得出了与标度分析非常吻合的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验