Department of Systems Engineering, Otterbein University , Westerville, Ohio 43081, United States.
ACS Nano. 2017 Jul 25;11(7):6566-6573. doi: 10.1021/acsnano.6b07097. Epub 2017 Jun 9.
The ability to self-assemble nanodevices with programmed structural dynamics that can sense and respond to the local environment could enable transformative applications in fields including molecular robotics, nanomanufacturing, and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. Here, we mimic this approach by engineering inherent nanoscale structural dynamics (nanodynamics) into a DNA device that exhibits a distribution of conformations including two stable states separated by a transition state where the energy barrier height is on the scale of the thermal energy, kT = 4.1 pN·nm, enabling spontaneous transitions between states. We further establish design principles to regulate the equilibrium and kinetic behavior by substituting a few DNA strand components. We use single-molecule Förster resonance energy transfer measurements to show these nanodynamic properties are sensitive to sub-piconewton depletion forces in the presence of molecular crowding agents, and the device can measure depletion forces with a resolution of ∼100 fN. We anticipate that this approach of engineering nanodynamic DNA devices will enable molecular-scale systems that sense and respond to their local environment with extremely high sensitivity.
具有可编程结构动力学的自组装纳米器件能够感应和响应局部环境,这可能会为分子机器人、纳米制造和纳米医学等领域带来变革性的应用。生物分子的响应功能通常是由与局部环境的高度敏感相互作用介导的构象分布的改变驱动的。在这里,我们通过将固有纳米尺度结构动力学(纳米动力学)工程到一个 DNA 器件中,从而模拟这种方法,该 DNA 器件表现出包括两个稳定状态的构象分布,其中存在一个过渡状态,其能量势垒高度与热能相当,kT=4.1 pN·nm,从而能够在状态之间自发转换。我们进一步建立了设计原则,通过取代几个 DNA 链组件来调节平衡和动力学行为。我们使用单分子Förster 共振能量转移测量来表明,这些纳米动力学特性对分子拥挤剂存在下的亚皮牛顿耗竭力敏感,并且该器件可以以约 100 fN 的分辨率测量耗竭力。我们预计,这种工程纳米动力学 DNA 器件的方法将能够实现对其局部环境具有极高灵敏度的分子尺度系统。