Suppr超能文献

用元动力学探测 DNA 纳米结构的机械性能。

Probing the Mechanical Properties of DNA Nanostructures with Metadynamics.

机构信息

Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.

Department of Chemistry and fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.

出版信息

ACS Nano. 2022 Jun 28;16(6):8784-8797. doi: 10.1021/acsnano.1c08999. Epub 2022 May 17.

Abstract

Molecular dynamics simulations are often used to provide feedback in the design workflow of DNA nanostructures. However, even with coarse-grained models, the convergence of distributions from unbiased simulation is slow, limiting applications to equilibrium structural properties. Given the increasing interest in dynamic, reconfigurable, and deformable devices, methods that enable efficient quantification of large ranges of motion, conformational transitions, and mechanical deformation are critically needed. Metadynamics is an automated biasing technique that enables the rapid acquisition of molecular conformational distributions by flattening free energy landscapes. Here we leveraged this approach to sample the free energy landscapes of DNA nanostructures whose unbiased dynamics are nonergodic, including bistable Holliday junctions and part of a bistable DNA origami structure. Taking a DNA origami-compliant joint as a case study, we further demonstrate that metadynamics can predict the mechanical response of a full DNA origami device to an applied force, showing good agreement with experiments. Our results exemplify the efficient computation of free energy landscapes and force response in DNA nanodevices, which could be applied for rapid feedback in iterative design workflows and generally facilitate the integration of simulation and experiments. Metadynamics will be particularly useful to guide the design of dynamic devices for nanorobotics, biosensing, or nanomanufacturing applications.

摘要

分子动力学模拟常用于为 DNA 纳米结构的设计工作流程提供反馈。然而,即使使用粗粒化模型,无偏模拟分布的收敛速度也很慢,限制了其在平衡结构特性方面的应用。鉴于人们对动态、可重构和可变形设备的兴趣日益增加,因此迫切需要能够高效量化大范围运动、构象转变和机械变形的方法。元动力学是一种自动偏置技术,通过使自由能景观变平,能够快速获取分子构象分布。在这里,我们利用这种方法来采样无偏动力学是非遍历的 DNA 纳米结构的自由能景观,包括双稳态 Holliday 结和双稳态 DNA 折纸结构的一部分。以 DNA 折纸兼容接头为例,我们进一步证明元动力学可以预测施加力对整个 DNA 折纸器件的机械响应,与实验结果吻合较好。我们的结果说明了在 DNA 纳米器件中有效计算自由能景观和力响应的方法,这可用于迭代设计工作流程中的快速反馈,并普遍促进模拟和实验的整合。元动力学对于指导用于纳米机器人、生物传感或纳米制造应用的动态器件的设计将特别有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/178b/9245350/f60dbbaaca79/nn1c08999_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验