Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798.
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China.
J Am Chem Soc. 2017 Jun 28;139(25):8653-8660. doi: 10.1021/jacs.7b03752. Epub 2017 Jun 16.
Rational design and synthesis of heterostructures based on transition metal dichalcogenides (TMDs) have attracted increasing interests because of their promising applications in electronics, catalysis, etc. However, the construction of epitaxial heterostructures with an interface at the edges of TMD nanosheets (NSs) still remains a great challenge. Here, we report a strategy for controlled synthesis of a new type of heterostructure in which TMD NSs, including MoS and MoSe, vertically grow along the longitudinal direction of one-dimensional (1D) CuS nanowires (NWs) in an epitaxial manner. The obtained CuS-TMD heterostructures with tunable loading amount and lateral size of TMD NSs are achieved by the consecutive growth of TMD NSs on CuS NWs through gradual injection of chalcogen precursors. After cation exchange of Cu in CuS-TMD heterostructures with Cd, the obtained CdS-MoS heterostructures retained their original architectures. Compared to the pure CdS NWs, the CdS-MoS heterostructures with 7.7 wt % loading of MoS NSs exhibit the best performance in the photocatalytic hydrogen evolution reaction with a H production rate up to 4647 μmol·h·g, about 58 times that catalyzed with pure CdS NWs. Our synthetic strategy opens up a new way for the controlled synthesis of TMD-based heterostructures, which could have various promising applications.
基于过渡金属二硫属化物(TMDs)的异质结构的合理设计和合成由于其在电子学、催化等方面的应用前景而引起了越来越多的关注。然而,在 TMD 纳米片(NSs)边缘构建外延异质结构仍然是一个巨大的挑战。在这里,我们报告了一种控制合成新型异质结构的策略,其中 TMD NSs,包括 MoS 和 MoSe,以外延方式沿一维(1D)CuS 纳米线(NWs)的纵向方向垂直生长。通过逐步注入硫属元素前体,在 CuS NWs 上连续生长 TMD NSs,从而获得具有可调 TMD NSs 负载量和横向尺寸的 CuS-TMD 异质结构。通过对 CuS-TMD 异质结构中的 Cu 进行阳离子交换为 Cd,所得到的 CdS-MoS 异质结构保留了其原始结构。与纯 CdS NWs 相比,在负载量为 7.7wt%的 MoS NSs 的 CdS-MoS 异质结构中,光催化析氢反应的性能最佳,产氢速率高达 4647 μmol·h·g,约为纯 CdS NWs 催化速率的 58 倍。我们的合成策略为基于 TMD 的异质结构的可控合成开辟了一条新途径,具有广阔的应用前景。