Suppr超能文献

用于高效光催化产氢的MoS分层CdS-CuS核壳纳米棒

MoS-Stratified CdS-CuS Core-Shell Nanorods for Highly Efficient Photocatalytic Hydrogen Production.

作者信息

Liu Guoning, Kolodziej Charles, Jin Rong, Qi Shaopeng, Lou Yongbing, Chen Jinxi, Jiang Dechen, Zhao Yixin, Burda Clemens

机构信息

School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, No. 2 Southeast University Road, Nanjing 211189, P. R. China.

Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.

出版信息

ACS Nano. 2020 May 26;14(5):5468-5479. doi: 10.1021/acsnano.9b09470. Epub 2020 May 1.

Abstract

Heterojunction photocatalysts are widely adopted for efficient water splitting, but ion migration can seriously threaten the stability of heterojunctions, as with the well-known low stability of CdS-CuS due to intrinsic Cu ion migration. Here, we utilize Cu migration to design a stratified CdS-CuS/MoS photocatalyst, in which Cu@MoS (Cu-intercalated within the MoS basal plane) is created by Cu migration and intercalation to the adjacent MoS surface. The epitaxial vertical growth of the Cu@MoS nanosheets on the surface of one-dimensional core-shell CdS-CuS nanorods forms catalytic and protective layers to simultaneously enhance catalytic activity and stability. Charge transfer is verified by kinetics measurements with femtosecond time-resolved transient absorption spectroscopy and direct mapping of the surface charge distribution with a scanning ion conductance microscope. This design strategy demonstrates the potential of utilizing hybridized surface layers as effective catalytic and protective interfaces for photocatalytic hydrogen production.

摘要

异质结光催化剂被广泛用于高效水分解,但离子迁移会严重威胁异质结的稳定性,就像众所周知的CdS-CuS由于内在的铜离子迁移而稳定性较低一样。在此,我们利用铜迁移来设计一种分层的CdS-CuS/MoS光催化剂,其中通过铜迁移和嵌入相邻的MoS表面形成了Cu@MoS(铜嵌入在MoS基面内)。Cu@MoS纳米片在一维核壳CdS-CuS纳米棒表面的外延垂直生长形成了催化层和保护层,以同时提高催化活性和稳定性。通过飞秒时间分辨瞬态吸收光谱的动力学测量以及用扫描离子电导显微镜对表面电荷分布的直接映射验证了电荷转移。这种设计策略展示了利用杂化表面层作为光催化制氢有效催化和保护界面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验