Suppr超能文献

采用 3D 打印技术构建结构和功能优化的丝素蛋白-明胶支架修复体外和体内软骨损伤。

Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo.

机构信息

Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, P. R. China.

Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, 100871, P. R. China.

出版信息

Adv Mater. 2017 Aug;29(29). doi: 10.1002/adma.201701089. Epub 2017 Jun 6.

Abstract

Articular cartilage repair remains a great challenge for clinicians and researchers. Recently, there emerges a promising way to achieve one-step cartilage repair in situ by combining endogenic bone marrow stem cells (BMSCs) with suitable biomaterials using a tissue engineering technique. To meet the increasing demand for cartilage tissue engineering, a structurally and functionally optimized scaffold is designed, by integrating silk fibroin with gelatin in combination with BMSC-specific-affinity peptide using 3D printing (3DP) technology. The combination ratio of silk fibroin and gelatin greatly balances the mechanical properties and degradation rate to match the newly formed cartilage. This dually optimized scaffold has shown superior performance for cartilage repair in a knee joint because it not only retains adequate BMSCs, due to efficient recruiting ability, and acts as a physical barrier for blood clots, but also provides a mechanical protection before neocartilage formation and a suitable 3D microenvironment for BMSC proliferation, differentiation, and extracellular matrix production. It appears to be a promising biomaterial for knee cartilage repair and is worthy of further investigation in large animal studies and preclinical applications. Beyond knee cartilage, this dually optimized scaffold may also serve as an ideal biomaterial for the regeneration of other joint cartilages.

摘要

关节软骨修复仍然是临床医生和研究人员面临的巨大挑战。最近,一种有前途的方法是通过使用组织工程技术将内源性骨髓间充质干细胞(BMSCs)与合适的生物材料结合,实现一步原位软骨修复。为了满足对软骨组织工程日益增长的需求,通过 3D 打印(3DP)技术将丝素蛋白与明胶结合并整合 BMSC 特异性亲和肽,设计了一种结构和功能优化的支架。丝素蛋白和明胶的组合比例极大地平衡了机械性能和降解率,以适应新形成的软骨。由于具有高效的募集能力,这种双重优化的支架保留了足够的骨髓间充质干细胞,不仅可以防止血栓形成,还可以在新软骨形成之前提供机械保护,并为骨髓间充质干细胞的增殖、分化和细胞外基质的产生提供合适的 3D 微环境,因此在膝关节软骨修复中表现出优异的性能。它似乎是一种很有前途的用于膝关节软骨修复的生物材料,值得在大型动物研究和临床前应用中进一步研究。除了膝关节软骨,这种双重优化的支架也可能成为其他关节软骨再生的理想生物材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验