Suppr超能文献

源自人类多能干细胞的平衡抑制性-兴奋性皮质神经元网络的多层次表征

Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells.

作者信息

Nadadhur Aishwarya G, Emperador Melero Javier, Meijer Marieke, Schut Desiree, Jacobs Gerbren, Li Ka Wan, Hjorth J J Johannes, Meredith Rhiannon M, Toonen Ruud F, Van Kesteren Ronald E, Smit August B, Verhage Matthijs, Heine Vivi M

机构信息

Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands.

Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.

出版信息

PLoS One. 2017 Jun 6;12(6):e0178533. doi: 10.1371/journal.pone.0178533. eCollection 2017.

Abstract

Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.

摘要

从诱导多能干细胞(hiPSC)生成神经元培养物有助于人类脑部疾病的研究。然而,我们缺乏具有平衡的兴奋-抑制活性且适用于单细胞分析的神经网络。我们生成了源自人多能干细胞的GABA能和谷氨酸能皮质神经元的低密度网络。我们使用了两种不同的与星形胶质细胞共培养的模型。我们通过共聚焦显微镜、电生理记录、钙成像和mRNA分析表明,这些培养物具有平衡的兴奋-抑制突触特性。这些简单且可靠的方案为对患者来源的hiPSC皮质兴奋-抑制网络进行单细胞到多层次分析提供了机会;从而创建了研究神经发育障碍潜在疾病机制的先进工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a079/5460818/b02e5b6c5a49/pone.0178533.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验