Suppr超能文献

磁性侧向流动条,用于通过肉眼和智能手机摄像头检测尿液中的可卡因。

Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera.

机构信息

Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, 95 Yong-an Road, Xicheng District, Beijing 100050, China.

Analytical & Testing Center of Beijing Normal University, Beijing 100875, China.

出版信息

Sensors (Basel). 2017 Jun 5;17(6):1286. doi: 10.3390/s17061286.

Abstract

Magnetic lateral flow strip (MLFS) based on magnetic bead (MB) and smart phone camera has been developed for quantitative detection of cocaine (CC) in urine samples. CC and CC-bovine serum albumin (CC-BSA) could competitively react with MB-antibody (MB-Ab) of CC on the surface of test line of MLFS. The color of MB-Ab conjugate on the test line relates to the concentration of target in the competition immunoassay format, which can be used as a visual signal. Furthermore, the color density of the MB-Ab conjugate can be transferred into digital signal (gray value) by a smart phone, which can be used as a quantitative signal. The linear detection range for CC is 5-500 ng/mL and the relative standard deviations are under 10%. The visual limit of detection was 5 ng/mL and the whole analysis time was within 10 min. The MLFS has been successfully employed for the detection of CC in urine samples without sample pre-treatment and the result is also agreed to that of enzyme-linked immunosorbent assay (ELISA). With the popularization of smart phone cameras, the MLFS has large potential in the detection of drug residues in virtue of its stability, speediness, and low-cost.

摘要

基于磁珠(MB)和智能手机摄像头的磁性侧向流动条(MLFS)已被开发用于定量检测尿液样本中的可卡因(CC)。CC 和 CC-牛血清白蛋白(CC-BSA)可以与 MLFS 测试线上的 CC-MB 抗体(MB-Ab)竞争性反应。测试线上的 MB-Ab 缀合物的颜色与竞争免疫分析格式中的目标浓度有关,可作为视觉信号。此外,智能手机可以将 MB-Ab 缀合物的颜色密度转换为数字信号(灰度值),可作为定量信号。CC 的线性检测范围为 5-500ng/mL,相对标准偏差小于 10%。视觉检测限为 5ng/mL,整个分析时间在 10 分钟内。MLFS 已成功用于未经样品预处理的尿液样本中 CC 的检测,且结果与酶联免疫吸附测定(ELISA)一致。随着智能手机摄像头的普及,MLFS 凭借其稳定性、快速性和低成本,在药物残留检测方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5858/5492392/9685854f5110/sensors-17-01286-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验