待办事项:多剂量随机试验中剂量监测与优化的三结果双标准最优设计。

TODO: A Triple-Outcome Double-Criterion Optimal Design for Dose Monitoring-and-Optimization in Multi-Dose Randomized Trials.

作者信息

Zhang Jingyi, Zhou Heng, Wages Nolan A, Guo Zifang, Liu Fang, Jemielita Thomas, Yan Fangrong, Lin Ruitao

机构信息

Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China.

Biostatistics and Research Decision Sciences, Merck & Co., Inc, Rahway, New Jersey, USA.

出版信息

Stat Med. 2025 May;44(10-12):e70090. doi: 10.1002/sim.70090.

Abstract

Detecting the efficacy signal and determining the optimal dose are critical steps to increase the probability of success and expedite the drug development in cancer treatment. After identifying a safe dose range through phase I studies, conducting a multidose randomized trial becomes an effective approach to achieve this objective. However, there have been limited formal statistical designs for such multidose trials, and dose selection in practice is often ad hoc, relying on descriptive statistics. We propose a Bayesian optimal two-stage design to facilitate rigorous dose monitoring and optimization. Utilizing a flexible Bayesian dynamic linear model for the dose-response relationship, we employ dual criteria to assess dose admissibility and desirability. Additionally, we introduce a triple-outcome trial decision procedure to consider dose selection beyond clinical factors. Under the proposed model and decision rules, we develop a systematic calibration algorithm to determine the sample size and Bayesian posterior probability cutoffs to optimize specific design operating characteristics. Furthermore, we demonstrate how to concurrently assess toxicity and efficacy within the proposed framework using a utility-based risk-benefit trade-off. To validate the effectiveness of our design, we conduct extensive simulation studies across a variety of scenarios, demonstrating its robust operating characteristics.

摘要

检测疗效信号并确定最佳剂量是提高癌症治疗成功率和加快药物研发进程的关键步骤。在通过I期研究确定安全剂量范围后,进行多剂量随机试验成为实现这一目标的有效方法。然而,此类多剂量试验的正式统计设计有限,实践中的剂量选择往往是临时决定的,依赖于描述性统计。我们提出一种贝叶斯最优两阶段设计,以促进严格的剂量监测和优化。利用灵活的贝叶斯动态线性模型来描述剂量反应关系,我们采用双重标准来评估剂量的可接受性和可取性。此外,我们引入一种三结果试验决策程序,以考虑临床因素之外的剂量选择。在所提出的模型和决策规则下,我们开发一种系统校准算法,以确定样本量和贝叶斯后验概率临界值,从而优化特定设计的操作特性。此外,我们展示了如何在提出的框架内使用基于效用的风险效益权衡来同时评估毒性和疗效。为了验证我们设计的有效性,我们在各种场景下进行了广泛的模拟研究,证明了其稳健的操作特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2288/12089520/3055773e7c4c/SIM-44-0-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索