Suppr超能文献

双靶向纳米颗粒刺激免疫系统抑制肿瘤生长。

Dual Targeting Nanoparticle Stimulates the Immune System To Inhibit Tumor Growth.

机构信息

Department of Biomedical Engineering, ‡Institute for Nanobiotechnology, §Institute for Cell Engineering, and ∥Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States.

出版信息

ACS Nano. 2017 Jun 27;11(6):5417-5429. doi: 10.1021/acsnano.6b08152. Epub 2017 Jun 7.

Abstract

We describe the development of a nanoparticle platform that overcomes the immunosuppressive tumor microenvironment. These nanoparticles are coated with two different antibodies that simultaneously block the inhibitory checkpoint PD-L1 signal and stimulate T cells via the 4-1BB co-stimulatory pathway. These "immunoswitch" particles significantly delay tumor growth and extend survival in multiple in vivo models of murine melanoma and colon cancer in comparison to the use of soluble antibodies or nanoparticles separately conjugated with the inhibitory and stimulating antibodies. Immunoswitch particles enhance effector-target cell conjugation and bypass the requirement for a priori knowledge of tumor antigens. The use of the immunoswitch nanoparticles resulted in an increased density, specificity, and in vivo functionality of tumor-infiltrating CD8+ T cells. Changes in the T cell receptor repertoire against a single tumor antigen indicate immunoswitch particles expand an effective set of T cell clones. Our data show the potential of a signal-switching approach to cancer immunotherapy that simultaneously targets two stages of the cancer immunity cycle resulting in robust antitumor activity.

摘要

我们描述了一种纳米颗粒平台的开发,该平台克服了免疫抑制性肿瘤微环境。这些纳米颗粒被两种不同的抗体包裹,这些抗体可以同时阻断抑制性检查点 PD-L1 信号,并通过 4-1BB 共刺激途径刺激 T 细胞。与单独使用可溶性抗体或与抑制性和刺激性抗体分别缀合的纳米颗粒相比,这些“免疫开关”颗粒显著延迟了多种体内小鼠黑色素瘤和结肠癌模型中的肿瘤生长并延长了生存时间。免疫开关颗粒增强效应靶细胞的连接,并绕过对肿瘤抗原的先验知识的要求。使用免疫开关纳米颗粒导致肿瘤浸润 CD8+T 细胞的密度、特异性和体内功能增加。针对单一肿瘤抗原的 T 细胞受体库的变化表明,免疫开关颗粒可扩展有效的 T 细胞克隆集。我们的数据表明,信号转换方法在癌症免疫治疗中具有潜力,该方法同时针对癌症免疫周期的两个阶段,从而产生强大的抗肿瘤活性。

相似文献

1
Dual Targeting Nanoparticle Stimulates the Immune System To Inhibit Tumor Growth.
ACS Nano. 2017 Jun 27;11(6):5417-5429. doi: 10.1021/acsnano.6b08152. Epub 2017 Jun 7.
4
Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine.
Mol Pharm. 2019 Mar 4;16(3):1200-1210. doi: 10.1021/acs.molpharmaceut.8b01165. Epub 2019 Jan 25.
5
A Tumor-Peptide-Based Nanoparticle Vaccine Elicits Efficient Tumor Growth Control in Antitumor Immunotherapy.
Mol Cancer Ther. 2019 Jun;18(6):1069-1080. doi: 10.1158/1535-7163.MCT-18-0764. Epub 2019 Apr 8.
7
Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma.
J Immunol. 2010 Apr 1;184(7):3442-9. doi: 10.4049/jimmunol.0904114. Epub 2010 Mar 1.

引用本文的文献

1
Engineering multi-specific nano-antibodies for cancer immunotherapy.
Nat Biomed Eng. 2025 Jun 26. doi: 10.1038/s41551-025-01425-5.
2
Nano-immunotherapy: Merging immunotherapy precision with nanomaterial delivery.
iScience. 2025 Mar 30;28(5):112319. doi: 10.1016/j.isci.2025.112319. eCollection 2025 May 16.
3
Nanotechnology in oncology: a mini review.
Rev Assoc Med Bras (1992). 2024 Dec 2;70(12):e20241347. doi: 10.1590/1806-9282.20241347. eCollection 2024.
5
Nanomaterial-Based Strategies for Attenuating T-Cell-Mediated Immunodepression in Stroke Patients: Advancing Research Perspectives.
Int J Nanomedicine. 2024 Jun 12;19:5793-5812. doi: 10.2147/IJN.S456632. eCollection 2024.
6
Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity.
Pharmaceutics. 2023 Sep 30;15(10):2406. doi: 10.3390/pharmaceutics15102406.
7
Nano-immunotherapy: overcoming delivery challenge of immune checkpoint therapy.
J Nanobiotechnology. 2023 Sep 21;21(1):339. doi: 10.1186/s12951-023-02083-y.
8
Immunotherapies targeting tumor vasculature: challenges and opportunities.
Front Immunol. 2023 Sep 1;14:1226360. doi: 10.3389/fimmu.2023.1226360. eCollection 2023.
9
Progress in nanoparticle-based regulation of immune cells.
Med Rev (2021). 2023 Apr 12;3(2):152-179. doi: 10.1515/mr-2022-0047. eCollection 2023 Apr.
10
Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics.
Beilstein J Nanotechnol. 2023 Sep 4;14:912-926. doi: 10.3762/bjnano.14.75. eCollection 2023.

本文引用的文献

1
CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression.
FEBS Lett. 2015 Nov 14;589(22):3454-60. doi: 10.1016/j.febslet.2015.07.027. Epub 2015 Jul 29.
2
Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy.
ACS Nano. 2015 Jul 28;9(7):6861-71. doi: 10.1021/acsnano.5b02829. Epub 2015 Jul 14.
3
2015: The Year of Anti-PD-1/PD-L1s Against Melanoma and Beyond.
EBioMedicine. 2015 Jan 19;2(2):92-3. doi: 10.1016/j.ebiom.2015.01.011. eCollection 2015.
4
Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma.
N Engl J Med. 2015 Jul 2;373(1):23-34. doi: 10.1056/NEJMoa1504030. Epub 2015 May 31.
6
Adoptive cell transfer as personalized immunotherapy for human cancer.
Science. 2015 Apr 3;348(6230):62-8. doi: 10.1126/science.aaa4967.
7
Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells.
Science. 2015 May 15;348(6236):803-8. doi: 10.1126/science.aaa3828. Epub 2015 Apr 2.
8
Adoptive cellular therapy: a race to the finish line.
Sci Transl Med. 2015 Mar 25;7(280):280ps7. doi: 10.1126/scitranslmed.aaa3643.
9
Genetic basis for clinical response to CTLA-4 blockade in melanoma.
N Engl J Med. 2014 Dec 4;371(23):2189-2199. doi: 10.1056/NEJMoa1406498. Epub 2014 Nov 19.
10
Nivolumab in previously untreated melanoma without BRAF mutation.
N Engl J Med. 2015 Jan 22;372(4):320-30. doi: 10.1056/NEJMoa1412082. Epub 2014 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验