Suppr超能文献

人工智能在眼科光学相干断层扫描中的应用:一项为期12年的文献计量分析。

Artificial intelligence applications in ophthalmic optical coherence tomography: a 12-year bibliometric analysis.

作者信息

Wang Ruo-Yu, Zhu Si-Yuan, Hu Xin-Ya, Sun Li, Zhang Shao-Chong, Yang Wei-Hua

机构信息

Department of Global Public Health, Karolinska Institute, Stockholm 17177, Sweden.

The First Clinical Medical School, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China.

出版信息

Int J Ophthalmol. 2024 Dec 18;17(12):2295-2307. doi: 10.18240/ijo.2024.12.19. eCollection 2024.

Abstract

AIM

To explore the current application and research frontiers of global ophthalmic optical coherence tomography (OCT) imaging artificial intelligence (AI) research.

METHODS

The citation data were downloaded from the Web of Science Core Collection database (WoSCC) to evaluate the articles in application of AI in ophthalmic OCT published from January 1, 2012 to December 31, 2023. This information was analyzed using CiteSpace 6.2.R2 Advanced software, and high-impact articles were analyzed.

RESULTS

In general, 877 articles from 65 countries were studied and analyzed, of which 261 were published by the United States and 252 by China. The centrality of the United States is 0.33, the H index is 38, and the H index of two institutions in England reaches 20. Ophthalmology, computer science, and AI are the main disciplines involved. Hot keywords after 2018 include deep learning (DL), AI, macular degeneration, and automatic segmentation.

CONCLUSION

The annual number of articles on AI applications in ophthalmic OCT has grown rapidly. The United States holds a prominent position. Institutions like the University of California System and the University of London are spearheading advancements. Initial researches centered on the automatic recognition and diagnosis of ocular diseases leveraging traditional machine learning (ML) technology and OCT images. Nowadays, the imaging process algorithm selection has shifted its focus towards DL. Concurrently, optical coherence tomography angiography (OCTA) and computer-aided diagnosis (CAD) have emerged as key areas of contemporary research.

摘要

目的

探讨全球眼科光学相干断层扫描(OCT)成像人工智能(AI)研究的当前应用及研究前沿。

方法

从科学网核心合集数据库(WoSCC)下载引用数据,以评估2012年1月1日至2023年12月31日发表的关于AI在眼科OCT中应用的文章。使用CiteSpace 6.2.R2高级软件分析这些信息,并对高影响力文章进行分析。

结果

总体而言,对来自65个国家的877篇文章进行了研究和分析,其中美国发表了261篇,中国发表了252篇。美国的中心性为0.33,H指数为38,英国两个机构的H指数达到20。涉及的主要学科有眼科学、计算机科学和AI。2018年后的热门关键词包括深度学习(DL)、AI、黄斑变性和自动分割。

结论

眼科OCT中AI应用的文章数量逐年快速增长。美国占据突出地位。加利福尼亚大学系统和伦敦大学等机构处于领先地位。最初的研究集中在利用传统机器学习(ML)技术和OCT图像对眼部疾病进行自动识别和诊断。如今,成像过程算法选择已将重点转向DL。同时,光学相干断层扫描血管造影(OCTA)和计算机辅助诊断(CAD)已成为当代研究的关键领域。

相似文献

4
Bibliometric analysis of research on the application of deep learning to ophthalmology.深度学习在眼科应用研究的文献计量分析
Quant Imaging Med Surg. 2025 Jan 2;15(1):852-866. doi: 10.21037/qims-24-1340. Epub 2024 Dec 30.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验