Suppr超能文献

神经反馈的机制:一种计算理论方法。

Mechanisms of Neurofeedback: A Computation-theoretic Approach.

机构信息

Department of Psychological Sciences, Birkbeck, University of London, Malet Street, WC1E 7HX London, United Kingdom.

出版信息

Neuroscience. 2018 May 15;378:175-188. doi: 10.1016/j.neuroscience.2017.05.052. Epub 2017 Jun 9.

Abstract

Neurofeedback training is a form of brain training in which information about a neural measure is fed back to the trainee who is instructed to increase or decrease the value of that particular measure. This paper focuses on electroencephalography (EEG) neurofeedback in which the neural measures of interest are the brain oscillations. To date, the neural mechanisms that underlie successful neurofeedback training are still unexplained. Such an understanding would benefit researchers, funding agencies, clinicians, regulatory bodies, and insurance firms. Based on recent empirical work, an emerging theory couched firmly within computational neuroscience is proposed that advocates a critical role of the striatum in modulating EEG frequencies. The theory is implemented as a computer simulation of peak alpha upregulation, but in principle any frequency band at one or more electrode sites could be addressed. The simulation successfully learns to increase its peak alpha frequency and demonstrates the influence of threshold setting - the threshold that determines whether positive or negative feedback is provided. Analyses of the model suggest that neurofeedback can be likened to a search process that uses importance sampling to estimate the posterior probability distribution over striatal representational space, with each representation being associated with a distribution of values of the target EEG band. The model provides an important proof of concept to address pertinent methodological questions about how to understand and improve EEG neurofeedback success.

摘要

神经反馈训练是一种大脑训练形式,其中有关神经测量的信息被反馈给受训者,指示其增加或减少该特定测量值。本文专注于脑电图(EEG)神经反馈,其中感兴趣的神经测量是脑振荡。迄今为止,成功的神经反馈训练背后的神经机制仍未得到解释。这种理解将使研究人员、资助机构、临床医生、监管机构和保险公司受益。基于最近的实证工作,提出了一个新兴的理论,该理论牢固地立足于计算神经科学,主张纹状体在调节 EEG 频率方面起着关键作用。该理论被实现为峰值 alpha 上调的计算机模拟,但原则上可以解决一个或多个电极位置的任何频带。该模拟成功地学会了增加其峰值 alpha 频率,并展示了阈值设置的影响-决定提供正反馈还是负反馈的阈值。对模型的分析表明,神经反馈可以比作一种搜索过程,该过程使用重要性抽样来估计纹状体表示空间上的后验概率分布,每个表示都与目标 EEG 带的分布值相关联。该模型提供了一个重要的概念证明,以解决关于如何理解和提高 EEG 神经反馈成功的相关方法学问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验