Suppr超能文献

电子ASPECTS与机械取栓术后的预后相关且具有预测性。

e-ASPECTS Correlates with and Is Predictive of Outcome after Mechanical Thrombectomy.

作者信息

Pfaff J, Herweh C, Schieber S, Schönenberger S, Bösel J, Ringleb P A, Möhlenbruch M, Bendszus M, Nagel S

机构信息

From the Departments of Neuroradiology (J.P., C.H., M.M., M.B.).

Neurology (S. Shieber, S. Schönenberger, J.B., P.A.R., S.N.), University of Heidelberg, Heidelberg, Germany.

出版信息

AJNR Am J Neuroradiol. 2017 Aug;38(8):1594-1599. doi: 10.3174/ajnr.A5236. Epub 2017 Jun 8.

Abstract

BACKGROUND AND PURPOSE

The e-ASPECTS software is a tool for the automated use of ASPECTS. Our aim was to analyze whether baseline e-ASPECT scores correlate with outcome after mechanical thrombectomy.

MATERIALS AND METHODS

Patients with ischemic strokes in the anterior circulation who were admitted between 2010 and 2015, diagnosed by CT, and received mechanical thrombectomy were included. The ASPECTS on baseline CT was scored by e-ASPECTS and 3 expert raters, and interclass correlation coefficients were calculated. The e-ASPECTS was correlated with functional outcome (modified Rankin Scale) at 3 months by using the Spearman rank correlation coefficient. Unfavorable outcome was defined as mRS 4-6 at 3 months, and a poor scan was defined as e-ASPECTS 0-5.

RESULTS

Two hundred twenty patients were included, and 147 (67%) were treated with bridging protocols. The median e-ASPECTS was 9 (interquartile range, 8-10). Intraclass correlation coefficients between e-ASPECTS and raters were 0.72, 0.74, and 0.76 (all, < .001). e-ASPECTS (Spearman rank correlation coefficient = -0.15, = .027) correlated with mRS at 3 months. Patients with unfavorable outcome had lower e-ASPECTS (median, 8; interquartile range, 7-10 versus median, 9; interquartile range, 8-10; = .014). Sixteen patients (7.4%) had a poor scan, which was associated with unfavorable outcome (OR, 13.6; 95% CI, 1.8-104). Independent predictors of unfavorable outcome were e-ASPECTS (OR, 0.79; 95% CI, 0.63-0.99), blood sugar (OR, 1.01; 95% CI, 1.004-1.02), atrial fibrillation (OR, 2.64; 95% CI, 1.22-5.69), premorbid mRS (OR, 1.77; 95% CI, 1.21-2.58), NIHSS (OR, 1.11; 95% CI, 1.04-1.19), general anesthesia (OR, 0.24; 95% CI, 0.07-0.84), failed recanalization (OR, 8.47; 95% CI, 3.5-20.2), and symptomatic intracerebral hemorrhage (OR, 25.8; 95% CI, 2.5-268).

CONCLUSIONS

The e-ASPECTS correlated with mRS at 3 months and was predictive of unfavorable outcome after mechanical thrombectomy, but further studies in patients with poor scan are needed.

摘要

背景与目的

电子ASPECTS软件是一种用于自动应用ASPECTS的工具。我们的目的是分析基线电子ASPECTS评分与机械取栓术后的预后是否相关。

材料与方法

纳入2010年至2015年间因前循环缺血性卒中入院、经CT诊断并接受机械取栓治疗的患者。基线CT上的ASPECTS由电子ASPECTS和3名专家评分者进行评分,并计算组内相关系数。使用Spearman等级相关系数分析电子ASPECTS与3个月时的功能预后(改良Rankin量表)之间的相关性。不良预后定义为3个月时改良Rankin量表评分为4 - 6分,扫描结果差定义为电子ASPECTS评分为0 - 5分。

结果

共纳入220例患者,其中147例(67%)接受了桥接方案治疗。电子ASPECTS评分的中位数为9(四分位间距,8 - 10)。电子ASPECTS与评分者之间的组内相关系数分别为0.72、0.74和0.76(均P <.001)。电子ASPECTS(Spearman等级相关系数 = -0.15,P = 0.027)与3个月时的改良Rankin量表评分相关。预后不良的患者电子ASPECTS评分较低(中位数8;四分位间距,7 - 与中位数9;四分位间距,8 - 10;P = 0.014)。16例患者(7.4%)扫描结果差,这与不良预后相关(比值比,13.6;95%可信区间,1.8 - 104)。不良预后的独立预测因素包括电子ASPECTS(比值比,0.79;95%可信区间,0.63 - 0.99)、血糖(比值比,1.01;95%可信区间,1.004 - 1.02)、心房颤动(比值比,2.64;95%可信区间,1.22 - 5.69)、病前改良Rankin量表评分(比值比,1.77;95%可信区间,1.21 - 2.58)、美国国立卫生研究院卒中量表评分(比值比,1.11;95%可信区间,1.04 - 1.19)、全身麻醉(比值比。0.24;95%可信区间,0.07 - 0.84)、再通失败(比值比,8.47;95%可信区间,3.5 - 20.2)和症状性脑出血(比值比,25.8;95%可信区间,2.5 -)。

结论

电子ASPECTS与3个月时的改良Rankin量表评分相关,可预测机械取栓术后的不良预后,但需要对扫描结果差的患者进行进一步研究。

相似文献

引用本文的文献

3
Artificial intelligence, medications, pharmacogenomics, and ethics.人工智能、药物、药物基因组学与伦理学。
Pharmacogenomics. 2024;25(14-15):611-622. doi: 10.1080/14622416.2024.2428587. Epub 2024 Nov 15.

本文引用的文献

7
Thrombectomy within 8 hours after symptom onset in ischemic stroke.发病 8 小时内进行缺血性脑卒中取栓治疗。
N Engl J Med. 2015 Jun 11;372(24):2296-306. doi: 10.1056/NEJMoa1503780. Epub 2015 Apr 17.
9
Endovascular therapy for ischemic stroke with perfusion-imaging selection.血管内治疗缺血性卒中的灌注成像选择。
N Engl J Med. 2015 Mar 12;372(11):1009-18. doi: 10.1056/NEJMoa1414792. Epub 2015 Feb 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验