Purswani Jessica, Romero-Zaliz Rocío C, Martín-Platero Antonio M, Guisado Isabel M, González-López Jesús, Pozo Clementina
Environmental Microbiology Group, Institute of Water Research, University of GranadaGranada, Spain.
Department of Microbiology, University of GranadaGranada, Spain.
Front Microbiol. 2017 May 24;8:919. doi: 10.3389/fmicb.2017.00919. eCollection 2017.
Ecosystem functionality depends on interactions among populations, of the same or different taxa, and these are not just the sum of pairwise interactions. Thus, know-how of the social interactions occurring in mixed-populations are of high interest, however they are commonly unknown due to the limitations posed in tagging each population. The limitations include costs/time in tediously fluorescent tagging, and the number of different fluorescent tags. Tag-free strategies exist, such as high-throughput sequencing, but ultimately both strategies require the use of expensive machinery. Our work appoints social behaviors on individual strains in mixed-populations, offering a web-tool ( http://m4m.ugr.es/BSocial.html) for analyzing the community framework. Our quick and cheap approach includes the periodic monitoring of optical density (OD) from a full combinatorial testing of individual strains, where number of generations and growth rate are determined. The BSocial analyses then enable us to determine how the addition/absence of a particular species affects the net productivity of a microbial community and use this to select productive combinations, i.e., designate their social effect on a general community. Positive, neutral, or negative assignations are applied to describe the social behavior within the community by comparing fitness effects of the community against the individual strain. The usefulness of this tool for selection of optimal inoculum in biofilm-based methyl -butyl ether (MTBE) bioremediation was demonstrated. The studied model uses seven bacterial strains with diverse MTBE degradation/growth capacities. Full combinatorial testing of seven individual strains (triplicate tests of 127 combinations) were implemented, along with MTBE degradation as the desired function. Sole observation of highest species fitness did not render the best functional outcome, and only when strains with positive and neutral social assignations were mixed ( EE6, sp. MS2 and SH7), was this obtained. Furthermore, the use of positive and neutral strains in all its combinations had a significant higher degradation mean (x1.75) than exclusive negative strain combinations. Thus, social microbial processes benefit bioremediation more than negative social microbial combinations. The BSocial webtool is a great contributor to the study of social interactions in bioremediation processes, and may be used in other natural or synthetic habitat studies.
生态系统功能取决于同一种群或不同分类群种群之间的相互作用,而这些相互作用并非仅仅是成对相互作用的总和。因此,了解混合种群中发生的社会相互作用非常重要,然而由于标记每个种群存在的限制,这些相互作用通常并不为人所知。这些限制包括繁琐的荧光标记的成本/时间,以及不同荧光标记的数量。存在无标记策略,如高通量测序,但最终这两种策略都需要使用昂贵的仪器。我们的工作确定了混合种群中各个菌株的社会行为,并提供了一个网络工具(http://m4m.ugr.es/BSocial.html)来分析群落框架。我们快速且廉价的方法包括对单个菌株进行全面组合测试,定期监测光密度(OD),从而确定世代数和生长速率。然后,BSocial分析使我们能够确定特定物种的添加/缺失如何影响微生物群落的净生产力,并利用这一点选择有生产力的组合,即确定它们对一般群落的社会影响。通过比较群落与单个菌株的适应度效应,应用正、中性或负的赋值来描述群落内的社会行为。证明了该工具在基于生物膜的甲基叔丁基醚(MTBE)生物修复中选择最佳接种物的有用性。所研究的模型使用了七种具有不同MTBE降解/生长能力的细菌菌株。对七种单个菌株进行了全面组合测试(对127种组合进行三次重复测试),并将MTBE降解作为期望的功能。仅观察最高物种适应度并不能产生最佳功能结果,只有当具有正和中性社会赋值的菌株混合(EE6、MS2菌和SH7)时,才能获得最佳结果。此外,所有组合中使用正和中性菌株的降解平均值(x1.75)显著高于仅使用负菌株的组合。因此,社会微生物过程比负社会微生物组合更有利于生物修复。BSocial网络工具对生物修复过程中社会相互作用的研究有很大贡献,并且可用于其他自然或合成栖息地研究。