Suppr超能文献

一种混合机器学习模型,用于预测和可视化美国加利福尼亚州中央谷含水层中的硝酸盐浓度。

A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA.

机构信息

University of California, Davis, Department of Land, Air, and Water Resources, United States.

U.S. Geological Survey National Water Quality Program, Reston, VA, United States.

出版信息

Sci Total Environ. 2017 Dec 1;601-602:1160-1172. doi: 10.1016/j.scitotenv.2017.05.192. Epub 2017 Jun 9.

Abstract

Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50ppb and probability of dissolved oxygen concentration to be below 0.5ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971-2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.

摘要

加利福尼亚中央谷地对水的强烈需求以及与之相关的地下水中硝酸盐浓度的增加,威胁着地下水资源的可持续性。为了评估该地区的污染风险,我们在统计学习框架内开发了一种混合的非线性机器学习模型,以预测地下水中硝酸盐的污染程度,深度约为地下 500 米。该数据库包含 145 个预测变量,代表井的特征、历史和当前田间和景观尺度的氮质量平衡、历史和当前土地利用、氧化/还原条件、地下水流动、气候、土壤特征、地下水深度和地下水年龄,这些变量被分配到 6000 多个先前测量过硝酸盐且位于研究区域内的私人供应和公共供应井。使用提升回归树 (BRT) 方法对变量进行筛选和排名,以预测家庭和公共水井供应深度的硝酸盐浓度。这种新方法包括作为预测变量的中央谷地现有物理模型的输出。前五个最重要的预测变量包括两个氧化/还原变量(锰浓度超过 50ppb 的概率和溶解氧浓度低于 0.5ppm 的概率)、1975 年时期的田间尺度调整的非饱和带氮输入、1971 年至 2000 年期间降水与蒸散量的平均差值以及 1992 年总景观氮输入。最终模型选择了 25 个变量用于对数转换后的硝酸盐。一般来说,增加缺氧条件的概率和降水相对于潜在蒸散量的增加会导致硝酸盐浓度预测值相应降低。相反,增加 1975 年非饱和带氮淋滤通量和 1992 年总景观氮输入对硝酸盐预测值的影响越来越大。三维可视化表明,硝酸盐预测取决于缺氧条件和其他因素的概率,并且硝酸盐预测值通常随着地下水年龄的增加而降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验