Suppr超能文献

多变量解析光谱图:激光诱导击穿光谱分析的新视角。

Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis.

机构信息

Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic.

AtomTrace a.s., Kolejní 9, 612 00, Brno, Czech Republic.

出版信息

Sci Rep. 2017 Jun 9;7(1):3160. doi: 10.1038/s41598-017-03426-0.

Abstract

In this work, we proposed a new data acquisition approach that significantly improves the repetition rates of Laser-Induced Breakdown Spectroscopy (LIBS) experiments, where high-end echelle spectrometers and intensified detectors are commonly used. The moderate repetition rates of recent LIBS systems are caused by the utilization of intensified detectors and their slow full frame (i.e. echellogram) readout speeds with consequent necessity for echellogram-to-1D spectrum conversion (intensity vs. wavelength). Therefore, we investigated a new methodology where only the most effective pixels of the echellogram were selected and directly used in the LIBS experiments. Such data processing resulted in significant variable down-selection (more than four orders of magnitude). Samples of 50 sedimentary ores samples (distributed in 13 ore types) were analyzed by LIBS system and then classified by linear and non-linear Multivariate Data Analysis algorithms. The utilization of selected pixels from an echellogram yielded increased classification accuracy compared to the utilization of common 1D spectra.

摘要

在这项工作中,我们提出了一种新的数据采集方法,可显著提高激光诱导击穿光谱(LIBS)实验的重复率,该实验通常使用高端的阶梯光栅光谱仪和增强型探测器。由于最近的 LIBS 系统采用了增强型探测器及其缓慢的全帧(即阶梯光栅)读出速度,因此需要进行阶梯光栅到 1D 光谱的转换(强度与波长),从而导致其重复率适中。因此,我们研究了一种新的方法,其中仅选择阶梯光栅中最有效的像素,并直接将其用于 LIBS 实验中。这种数据处理导致了显著的可变降选(超过四个数量级)。通过 LIBS 系统分析了 50 个沉积矿石样品(分布在 13 种矿石类型中),然后使用线性和非线性多元数据分析算法进行分类。与使用常见的 1D 光谱相比,从阶梯光栅中选择像素的使用提高了分类准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验